Skip to main content

Advertisement

Log in

Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The biomaterial bacterial cellulose (BC) represents an innovative approach for overcoming reconstructive problems associated with extended vascular diseases by providing small caliber vascular grafts (diameter 1.0–3.7, length 5.0–10.0, and wall-thickness 0.7 mm). In a first microsurgical study, the BC implants were attached in an artificial defect of the carotid artery of rats for 1 year. These long term results show the incorporation of the BC under formation of neointima and ingrowth of active fibroblasts. In a second study, the grafts were used to replace the carotid arteries of pigs. After 3 months, these grafts were removed and analyzed both macro- and microscopically. Seven grafts (87.5%) were patent whereas one graft was found occluded. These data indicate that the innovative BC engineering technique results in the production of stable vascular conduits and confirm a highly attractive approach to in vivo tissue engineered blood vessels as part of programs in cardiovascular surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

BC:

Bacterial cellulose

BASYC:

Bacterially synthesized cellulose

LSM:

Confocal laser scanning microscopy

ePTFE:

Expanded polytetrafluoroethylene

SEM:

Scanning electron microscopy

SMC:

Smooth muscle cell

TEM:

Transmission electron microscopy

References

  • American Heart Association (1999) 2000 Heart and stroke statistical update. American Heart Association, Dallas, TX

    Google Scholar 

  • Bäckdahl H, Helenius G, Bodin A et al (2006) Mechanical properties of bacterial cellulose and interaction with smooth muscle cells. Biomaterials 27:2141–2149. doi:10.1016/j.biomaterials.2005.10.026

    Article  Google Scholar 

  • Brothers TE, Stanley JC, Burkel WE et al (1990) Small-caliber polyurethane and polytetrafluoroethylene grafts: a comparative study in a canine aortoiliac model. J Biomed Mater Res 24:761–771. doi:10.1002/jbm.820240610

    Article  CAS  Google Scholar 

  • Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447. doi:10.3109/10408419109115207

    Article  CAS  Google Scholar 

  • Ciechanska D, Struszczyk H, Guzinska K (1998) Biosynthesis of cellulose in static conditions. Fibres Text East Eur 6:59–61

    CAS  Google Scholar 

  • Czaja WK, Young DJ, Kawecki M et al (2007) The future prospects of microbial cellulose in biomedical applications. Biomacromolecules 8:1–12. doi:10.1021/bm060620d

    Article  CAS  Google Scholar 

  • Eberhart A, Zhang Z, Guidoin R (1999) A new generation of polyurethane vascular prostheses: rara avis or ignis fatuus? J Biomed Mater Res 48:546–558. doi:10.1002/(SICI)1097-4636(1999)48:4<546::AID-JBM22>3.0.CO;2-V

    Article  CAS  Google Scholar 

  • Freischlag J, Moore W (1990) Clinical experience with a collagen-impregnated knitted Dacron vascular graft. Ann Vasc Surg 3:895–903

    Google Scholar 

  • Greisler HP (1990) Interactions at blood/material interface. Ann Vasc Surg 4:98–103. doi:10.1007/BF02042699

    Article  CAS  Google Scholar 

  • Guhados G, Wan W, Hutter JL (2005) Measurement of the elastic modulus of single bacterial cellulose fibers using atomic force microscopy. Langmuir 21:6642–6646. doi:10.1021/la0504311

    Article  CAS  Google Scholar 

  • Hergenrother RW, Yu XH, Cooper SL (1994) Blood-contacting properties of polydimethylsiloxane polyurea-urethanes. Biomaterials 15:635–640. doi:10.1016/0142-9612(94)90215-1

    Article  CAS  Google Scholar 

  • Hestrin S, Schramm M (1954) Synthesis of cellulose by Acetobacter xylinum. II. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem J 58:345–352

    CAS  Google Scholar 

  • Hongu T (1987) Wood and cellulosics: industrial utilization, biotechnology, structure and properties. Ellis Horwood Ltd., Chichester

    Google Scholar 

  • Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stabil 59:101–106. doi:10.1016/S0141-3910(97)00197-3

    Article  CAS  Google Scholar 

  • Klemm D, Marsch S, Schumann D et al (2001a) Method and device for producing shaped microbial cellulose for use as biomaterial, especially for microsurgery. WO 2001061026

  • Klemm D, Schumann D, Udhardt U et al (2001b) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603. doi:10.1016/S0079-6700(01)00021-1

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393. doi:10.1002/anie.200460587

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F et al (2006) Nanocelluloses as innovative polymers in research and application. Adv Polym Sci 205:49–96. doi:10.1007/12_097

    Article  CAS  Google Scholar 

  • Mertens RA, Ohara PJ, Hertzer NR et al (1995) Surgical management of infrainguinal arterial prosthetic graft infections: review of a thirty-five-year experience. J Vasc Surg 21:782–791. doi:10.1016/S0741-5214(05)80009-6

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys A 80:155–159. doi:10.1007/s00339-003-2225-2

    Article  CAS  Google Scholar 

  • Niklason LE, Gao J, Abbott WM (1999) Functional arteries grown in vitro. Science 284:489–493

    Article  CAS  Google Scholar 

  • Pasic M, Muller-Glauser W, Odermatt B et al (1995) Seeding with omental cells prevents late neointimal hyperplasia in small-diameter dacron grafts. Circulation 92:2605–2616

    CAS  Google Scholar 

  • Salmon S, Hudson SM (1997) Crystal morphology, biosynthesis, and physical assembly of cellulose, chitin, and chitosan. J Macromol Sci Rev Macromol Chem Phys C37:199–276

    CAS  Google Scholar 

  • Sayers RD, Raptis S, Berce M et al (1998) Long-term results of femorotibial bypass with vein or polytetrafluoroethylene. Br J Surg 85(7):934–938. doi:10.1046/j.1365-2168.1998.00765.x

    Article  CAS  Google Scholar 

  • Schubert MA, Wiggins MJ, Schaefer MP et al (1995) Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. J Biomed Mater Res 29:337–347. doi:10.1002/jbm.820290309

    Article  CAS  Google Scholar 

  • Sjöstrom E (1993) Wood chemistry, fundamentals and applications. Academic Press, London

    Google Scholar 

  • Szilagyi DE, Elliot JP, Smith RF et al (1986) A thirty-year survey of reconstructive surgical treatment of aortoiliac occlusive disease. J Vasc Surg 3:421–436. doi:10.1067/mva.1986.avs0030421

    Article  CAS  Google Scholar 

  • Voorhees AB, Jaretski A, Blakemore AH (1952) The use of tubes constructed from ‘Vinyon’ N cloth in bridging arterial defects. Ann Surg 135:332–336. doi:10.1097/00000658-195203000-00006

    Article  Google Scholar 

  • White DG, Brown RM Jr (1989) Prospects for the commercialization of the biosynthesis of microbial cellulose. In: Schuerch C (ed) Cellulose and wood—chemistry and technology. Wiley, New York

    Google Scholar 

  • Yamanaka S, Watanabe K (1994) Applications of bacterial cellulose. In: Gilbert RD (ed) Cellulosic polymers, blends and composites. Hauser Verlag, München

    Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N et al (1989) The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci 24:3141–3145. doi:10.1007/BF01139032

    Article  CAS  Google Scholar 

  • Yano H, Nakahara S (2004) Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network. J Mater Sci 39:1635–1638. doi:10.1023/B:JMSC.0000016162.43897.0a

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN et al (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155. doi:10.1002/adma.200400597

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dieter A. Schumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schumann, D.A., Wippermann, J., Klemm, D.O. et al. Artificial vascular implants from bacterial cellulose: preliminary results of small arterial substitutes. Cellulose 16, 877–885 (2009). https://doi.org/10.1007/s10570-008-9264-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-008-9264-y

Keywords

Navigation