Skip to main content
Log in

NSIWD: new statistical image watermark detector

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

For any image watermarking algorithm, how to achieve the trade-off among robustness, imperceptibility, and watermark capacity is a challenging problem because of their mutually constrained relationship. In this paper, we design a statistical-based image watermarking detection system to solve the trade-off problem. In embedding process, consider the imperceptibility and the robustness, we inventively combine the undecimated discrete wavelet transforms (UDWT) difference domain and the polar harmonic Fourier moments (PHFMs) to obtain the UDWT difference domain PHFMs magnitudes as the watermark carriers, and we embed watermark signals in multiplicative manner. In modeling phase, by analyzing the statistical property and the strong inter-orientation correlations of the UDWT difference domain PHFMs magnitudes in horizontal direction and vertical direction, we model the magnitude coefficients with the bivariate generalized exponential distribution so that we can capture accurately the marginal characteristics and the strong inter-orientation dependencies at the same time. Moreover, we obtain the model parameters with the modified maximum likelihood estimation. Benefit from the reliable modeling result, we finally employ the locally most powerful decision rule to derive a novel specific locally optimum image watermark detector with a closed-form expression to blindly detect the existence of the watermarks. Extensive experiment results declare the designed statistical image watermarking system can accurately detect the existence of the watermarks, and it achieves the better balance among imperceptibility, robustness, and payload.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wan W, Wang J, Zhang Y, Li J, Yu H, Sun J (2022) A comprehensive survey on robust image watermarking. Neurocomputing 488:226–247

    Article  Google Scholar 

  2. Tian C, Wen RH, Zou WP, Gong LH (2020) Robust and blind watermarking algorithm based on DCT and SVD in the contourlet domain. Multimed Tools Appl 79(11):7515–7541

    Article  Google Scholar 

  3. Kalantari NK, Ahadi SM, Vafadust M (2010) A robust image watermarking in the Ridgelet domain using universally optimum decoder. IEEE Trans Circuits Syst Video Technol 20(3):396–406

    Article  Google Scholar 

  4. Yadav B, Kumar A, Kumar Y (2018) A robust digital image watermarking algorithm using DWT and SVD. Soft Comput Theor Appl 583:25–36

    Google Scholar 

  5. Meenakshi K, Swaraja K, Kora P, Karuna G (2021) A robust blind oblivious video watermarking scheme using undecimated discrete wavelet transform. Intell Syst Des 1171:169–177

    Google Scholar 

  6. Thanki R, Kothari A, Trivedi D (2019) Hybrid and blind watermarking scheme in DCuT-RDWT domain. J Inf Secur Appl 46:231–249

    Google Scholar 

  7. Niu PP, Shen X, Song YF, Liu YN, Wang XY (2020) Locally optimum watermark decoder in NSST domain using RSS-based Cauchy distribution. Multimed Tools Appl 79(43):33071–33101

    Article  Google Scholar 

  8. Ahmaderaghi B, Kurugollu F, Del Rincon JM, Bouridane A (2018) Blind image watermark detection algorithm based on discrete shearlet transform using statistical decision theory. IEEE Trans Comput Imaging 4(1):46–59

    Article  MathSciNet  Google Scholar 

  9. Etemad S, Amirmazlaghani M (2018) A new multiplicative watermark detector in the contourlet domain using t location-scale distribution. Pattern Recogn 77:99–112

    Article  Google Scholar 

  10. Sadreazami H, Amini M (2019) A robust image watermarking scheme using local statistical distribution in the contourlet domain. IEEE Trans Circuits Syst II Express Briefs 66(1):151–155

    Google Scholar 

  11. Bi H, Liu Y, Wu M, Ge Y (2016) NSCT domain additive watermark detection using RAO hypothesis test and Cauchy distribution. Math Probl Eng 7:1–18

    MATH  Google Scholar 

  12. Liu J (2018) An image watermarking algorithm based on energy scheme in the wavelet transform domain. Proceedings of the 2018 IEEE 3rd International Conference on Image, Vision and Computing, Chongqing, China, 668–672

  13. Dong L, Yan Q, Lv Y, Deng SY (2016) Full band watermarking in DCT domain with Weibull model. Multimed Tools Appl 76(2):1–18

    Google Scholar 

  14. Rabizadeh M, Amirmazlaghani M, Attari MA (2016) A new detector for contourlet domain multiplicative image watermarking using Bessel K form distribution. J Vis Commun Image Represent 40:324–334

    Article  Google Scholar 

  15. Wang XY, Zhang SY, Wen TT, Xu H, Yang HY (2020) Synchronization correction-based robust digital image watermarking approach using Bessel K-form PDF. Pattern Anal Appl 23(2):933–951

    Article  MathSciNet  Google Scholar 

  16. Sadreazami H, Ahmad MO, Swamy MNS (2016) Multiplicative watermark decoder in contourlet domain using the normal inverse Gaussian distribution. IEEE Trans Multimed 18(2):196–207

    Article  Google Scholar 

  17. Yin X, Peng S, Zhu X (2011) Detection for multiplicative watermarking in DCT domain by Cauchy model. In: International Conference on Information and Communications Security, Heidelberg, Berlin, 173–183

  18. Wang XY, Zhang SY, Wang L, Yang HY, Niu PP (2019) Locally optimum image watermark decoder by modeling NSCT domain difference coefficients with vector based Cauchy distribution. J Vis Commun Image Represent 62:309–329

    Article  Google Scholar 

  19. Niu PP, Wang L, Tian J, Zhang SY, Wang XY (2021) A statistical color image watermarking scheme using local QPCET and Cauchy–Rayleigh distribution. Circuits Syst Signal Process 40:4516–4545

    Article  Google Scholar 

  20. Wang XH, Song RX, Mu ZH, Song CM (2020) An image NSCT-HMT model based on copula entropy multivariate Gaussian scale mixtures. Knowl-Based Syst 193:105387

    Article  Google Scholar 

  21. Sadreazami H, Ahmad MO, Swamy MNS (2015) A robust multiplicative watermark detector for color images in sparse domain. IEEE Trans Circuits Syst II Express Briefs 62(12):1159–1163

    Google Scholar 

  22. Amirmazlaghani M (2017) A novel statistical detector for contourlet domain image watermarking using 2D-GARCH model. In: International Conference on Image Analysis and Processing, Catania, Italy 547–557

  23. Wang XY, Wen TT, Shen X, Niu PP, Yang HY (2020) A new watermark decoder in DNST domain using singular values and Gaussian-Cauchy mixture-based vector HMT. Inf Sci 535:81–106

    Article  MathSciNet  Google Scholar 

  24. Sadreazami H, Amini M (2019) A robust image watermarking scheme using local statistical distribution in the contourlet domain. IEEE Trans Circuits Syst II Express Briefs 66–II(1):151–155

    Google Scholar 

  25. Barazandeh M, Amirmazlaghani M (2016) A new statistical detector for additive image watermarking based on dual-tree complex wavelet transform. In: Proceeding of the 2016 2nd International Conference of Signal Processing and Intelligent Systems, Tehran, Iran

  26. Zebbiche K, Khelifi F, Loukhaoukha K (2018) Robust additive watermarkig in the DTCWT domain based on perceptual masking. Multimed Tools Appl 77(16):21281–21304

    Article  Google Scholar 

  27. Wang XY, Zhang SY, Wen TT, Yang HY, Niu PP (2019) Coefficient difference based watermark detector in nonsubsampled contourlet transform domain. Inf Sci 503:274–290

    Article  MathSciNet  MATH  Google Scholar 

  28. Amini M, Sadreazami H, Ahmad MO, Swamy MNS (2019) A channel-dependent statistical watermark detector for color images. IEEE Trans Multimed 21(1):65–73

    Article  Google Scholar 

  29. Amini M, Ahmad MO, Swamy MNS (2017) A new locally optimum watermark detection using vector-based hidden Markov model in wavelet domain. Signal Process 137:213–222

    Article  Google Scholar 

  30. Sahu AK, Sahu M, Patro P, Sahu G, Nayak SR (2022) Dual image-based reversible fragile watermarking scheme for tamper detection and localization. Pattern Analysis and Applications, 1–20

  31. Sahu AK, Hassaballah M, Rao RS, Suresh G (2022) Logistic-map based fragile image watermarking scheme for tamper detection and localization. Multimedia Tools and Applications. 1–32.

  32. Sahu AK (2022) A logistic map based blind and fragile watermarking for tamper detection and localization in images. J Ambient Intell Humaniz Comput 13(8):3869–3881

    Article  Google Scholar 

  33. Suresh G, Narla VL, Gangwar DP, Sahu AK (2022) False-positive-free SVD based audio watermarking with integer wavelet transform. Circuits Syst Signal Process 41(9):5108–5133

    Article  Google Scholar 

  34. Vukotić V, Chappelier V, Furon T (2018) Are deep neural networks good for blind image watermarking. In: 2018 IEEE International Workshop on Information Forensics and Security, Hong Kong, China, 1–7

  35. Zhu J, Kaplan R, Johnson J, Li FF (2018) Hidden: Hiding data with deep networks. In: Proceedings of the European conference on computer vision, Munich, Germany, 657–672

  36. Jia ZY, Fang H, Zhang WM (2021) Mbrs: Enhancing robustness of dnn-based watermarking by mini-batch of real and simulated JPEG compression. In: Proceedings of the 29th ACM international conference on multimedia, New York, USA, 41–49

  37. Khajouei MA, Goudarzi A (2018) UDWT domain: a verified replacement for time domain implementation of the robust P phase picker algorithm. IEEE J Selected Top Appl Earth Obs Remote Sens 11(10):3918–3924

    Article  Google Scholar 

  38. Wang CP, Wang XY, Xia ZQ, Ma B, Shi YQ (2019) Image description with polar harmonic Fourier moments. IEEE Trans Circuits Syst Video Technol 30(12):4440–4452

    Article  Google Scholar 

  39. Ren HP, Ping ZL, Bo WRG (2003) Multidistortion-invariant image recognition with radial harmonic Fourier moments. J Opt Soc Am 20(4):631–637

    Article  MathSciNet  Google Scholar 

  40. Gupta RD, Kundu D (2007) Generalized exponential distribution: Existing results and some recent developments. J Stat Plan Inference 137(11):3537–3547

    Article  MathSciNet  MATH  Google Scholar 

  41. Mirhosseini SM, Amini M, Kundu D, Dolati A (2015) On a new absolutely continuous bivariate generalized exponential distribution. Stat Methods Appl 24(1):61–83

    Article  MathSciNet  MATH  Google Scholar 

  42. Kumar S, Chhaparwal P (2016) A robust unbiased dual to product estimator for population mean through modified maximum likelihood in simple random sampling. Cogent Math 3(1):1168070

    Article  MathSciNet  MATH  Google Scholar 

  43. Oral E (2017) Modified maximum likelihood estimation in Poisson regression. Biom Biostat Int J 6(1):00154

    MathSciNet  Google Scholar 

  44. Vaughan DC, Tiku ML (2000) Estimation and hypothesis testing for a nonnormal bivariate distribution with applications. Math Comput Model 32(1–2):53–67

    Article  MathSciNet  MATH  Google Scholar 

  45. Zong T, Xiang Y, Natgunanathan I (2015) Robust histogram shape-based method for image watermarking. IEEE Trans Circuits Syst Video Technol 25(5):717–729

    Article  Google Scholar 

  46. Sadreazami H, Ahmad MO, Swamy MNS (2015) Optimum multiplicative watermark detector in contourlet domain using the normal inverse Gaussian distribution. Proceeding of the IEEE International Symposium on Circuits & Systems. Lisbon, Portugal, 1050-1053

  47. Amini M, Sadreazami H, Ahmad MO, Swamy MNS (2017) Multichannel color image watermark detection utilizing vector-based hidden Markov model. In: Proceedings of the 2017 IEEE International Symposium on Circuits and Systems, Baltimore, MD, USA, 1–4

  48. Amirmazlaghani M (2016) Additive watermark detection in the wavelet domain using 2D-GARCH model. Inf Sci 370–371:1–17

    Article  MathSciNet  Google Scholar 

  49. Amirmazlaghani M (2019) Heteroscedastic watermark detector in the contourlet domain. IET Comput Vision 13(3):249–260

    Article  MathSciNet  Google Scholar 

  50. Mingxin M, Kexin W (2020) Automatic Portraiture Drawing System Based on Robotic Arm. In: 2020 IEEE 3rd International Conference on Automation, Senyang, China, 101–105

Download references

Acknowledgments

This work was supported partially by the National Natural Science Foundation of China (Nos. 61472171 & 61701212), Key Scientific Research Project of Liaoning Provincial Education Department (No. LJKZZ20220115), and Scientific Research Project of Liaoning Provincial Education Department (No. LJKMZ20221420).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Wang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix 1

Appendix 1

Means and variances of log-likelihood ratios under hypotheses \(H_{0}\) and \(H_{1}\) .

In this paper, the image watermark detection is considered as a binary hypothesis problem as illustrated in Sect. 6.1. Here, we derive the means and variances of the log-likelihood ratios under hypotheses \(H_{0}\) and \(H_{1}\). Let N denote the total numbers of the coefficients employed to insert the watermark signals. Then the mean value \(\mu_{0}\) and the variance \(\sigma_{0}^{2}\) under \(H_{0} :{\mathbf{y}} = {\mathbf{x}}\) are given as

$$\begin{gathered} \mu_{0} = E\left[ {\left. {l_{{{\text{LOD}}}} \left( Y \right)} \right|H_{0} } \right] \hfill \\ \;\;\;\;{\kern 1pt} {\kern 1pt} = \sum\limits_{i,j = 1}^{N} {\left( {\frac{\lambda }{2}\left( {d_{11} + d_{21} \cdot h_{{{\text{LO}}}} \left( {x_{i} ,x_{j} } \right)} \right) + \frac{\lambda }{2}\left( {d_{12} + d_{22} \cdot h_{{{\text{LO}}}} \left( {x_{i} ,x_{j} } \right)} \right)} \right)} = 0 \hfill \\ \end{gathered}$$
(37)

where \(h_{{{\text{LO}}}} \left( {x_{i} ,x_{j} } \right)\) indicates the “locally optimal nonlinearity,” \(d_{11}\) and \(d_{12}\) are the representations of \(d_{1}\) when the embedded watermark is 1 and − 1, respectively. Meanwhile, \(d_{21}\) and \(d_{22}\) are the representations of \(d_{2}\) when the embedded watermark is 1 and − 1, respectively.

$$\begin{gathered} \sigma_{{0}}^{{2}} = {\text{Var}}\left( {\left. {l_{{{\text{LOD}}}} \left( Y \right)} \right|H_{0} } \right) \hfill \\ \;\;\;\;{\kern 1pt} {\kern 1pt} = E\left[ {\left( {\sum\limits_{i,j = 1}^{N} {\left( {d_{1} + d_{2} \cdot h_{{{\text{LO}}}} \left( {x_{i} ,x_{j} } \right)} \right)} \cdot \lambda } \right)^{2} } \right] \hfill \\ \;\;\;\;{\kern 1pt} {\kern 1pt} = \sum\limits_{i,j = 1}^{N} {\left( {\left( {d_{11} + d_{21} \cdot h_{{{\text{LO}}}} \left( {x_{i} ,x_{j} } \right)} \right) \cdot \lambda } \right)^{2} } \hfill \\ \end{gathered}$$
(38)

Besides, the mean value \(\mu_{1}\) and the variance \(\sigma_{1}^{2}\) under \(H_{1} :{\mathbf{y}} = {\mathbf{x}} \cdot (1 + \lambda {\mathbf{w}})\) can be written as

$$\begin{gathered} \mu_{1} = E\left[ {l_{{{\text{LOD}}}} (Y)\left| {H_{1} } \right.} \right] \hfill \\ \begin{array}{*{20}c} {} & = \\ \end{array} E\left[ {\sum\limits_{i,j = 1}^{N} {\left( {\left( {d_{1} + d_{2} \cdot h_{{{\text{LO}}}} \left( {x_{i} \cdot (1 + \lambda \omega_{i} ),y_{j} } \right)} \right) \cdot \lambda } \right)} } \right] = \sum\limits_{i,j = 1}^{N} {\left( {\alpha_{i} + \beta_{i} } \right)} \hfill \\ \end{gathered}$$
(39)

where \(\alpha_{i} = \frac{\lambda }{2}\left( {d_{11} + d_{21} \cdot \left( {\frac{\alpha }{{1 - \alpha \cdot e^{{ - (\lambda_{1} x_{i} \cdot (1 + \lambda ) + \lambda_{2} y_{j} )}} }} - \frac{{e^{{ - (\lambda_{1} x_{i} \cdot (1 + \lambda ) + \lambda_{2} y_{j} )}} \cdot (1 - \alpha ) + 1}}{{e^{{ - (\lambda_{1} x_{i} \cdot (1 + \lambda ) + \lambda_{2} y_{j} )}} \cdot (1 - e^{{ - (\lambda_{1} x_{i} \cdot (1 + \lambda ) + \lambda_{2} y_{j} )}} )}}} \right)} \right)\), \(\beta_{i} = \frac{\lambda }{2}\left( {d_{12} + d_{22} \cdot \left( {\frac{\alpha }{{1 - \alpha \cdot e^{{ - (\lambda_{1} x_{i} \cdot (1 - \lambda ) + \lambda_{2} y_{j} )}} }} - \frac{{e^{{ - (\lambda_{1} x_{i} \cdot (1 - \lambda ) + \lambda_{2} y_{j} )}} \cdot (1 - \alpha ) + 1}}{{e^{{ - (\lambda_{1} x_{i} \cdot (1 - \lambda ) + \lambda_{2} y_{j} )}} \cdot (1 - e^{{ - (\lambda_{1} x_{i} \cdot (1 - \lambda ) + \lambda_{2} y_{j} )}} )}}} \right)} \right)\).

$$\begin{gathered} \sigma_{1}^{2} = Var\left( {l_{{{\text{LOD}}}} \left( Y \right)\left| {H_{1} } \right.} \right) \hfill \\ \quad \quad \quad = E\left[ {\left( {\left( {l_{{{\text{LOD}}}} (Y)\left| {H_{1} } \right.} \right) - \mu_{1} } \right)^{2} } \right] \hfill \\ \quad \quad \quad = \sum\limits_{i,j = 1}^{N} {E\left[ {\left( {\left( {d_{1} + d_{2} \cdot h_{{{\text{LO}}}} \left( {x_{i} \cdot (1 + \lambda \omega_{i} ),y_{j} } \right)} \right) \cdot \lambda - \alpha_{i} - \beta_{i} } \right)^{2} } \right]} \hfill \\ \quad \quad \quad \quad + \sum\limits_{l}^{N} {\sum\limits_{l \ne i,j} {E\left[ {\left( {\left( {d_{1} + d_{2} \cdot h_{{{\text{LO}}}} \left( {x_{l} \cdot (1 + \lambda \omega_{l} ),y_{l} } \right)} \right) \cdot \lambda - \alpha_{l} - \beta_{l} } \right) \cdot \left( {\left( {d_{1} + d_{2} \cdot h_{{{\text{LO}}}} \left( {x_{i} \cdot (1 + \lambda \omega_{i} ),y_{j} } \right)} \right) \cdot \lambda - \alpha_{i} - \beta_{i} } \right)} \right]} } \hfill \\ \quad \quad \quad = \sum\limits_{i,j = 1}^{N} {\left( {\alpha_{i} - \beta_{i} } \right)^{2} } \hfill \\ \end{gathered}$$
(40)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lin, Y., Gong, Q. et al. NSIWD: new statistical image watermark detector. Pattern Anal Applic 26, 1317–1348 (2023). https://doi.org/10.1007/s10044-023-01159-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-023-01159-7

Keywords

Navigation