Skip to main content
Log in

Differential tracking with a kernel-based region covariance descriptor

  • Theoretical Advances
  • Published:
Pattern Analysis and Applications Aims and scope Submit manuscript

Abstract

The covariance descriptor has received an increasing amount of interest in visual tracking. However, the conventional covariance tracking algorithms fail to estimate both the scale and orientation of an object. In this paper, we present a kernel-based region covariance descriptor to address this issue. An affine kernel function is incorporated to the covariance matrix to effectively control the correlations among extracted features inside the object region. Under the Log-Euclidean Riemannian metric, we construct a region similarity measure function that describes the relationship between the candidate and a given appearance template. The tracking task is then implemented by minimizing the similarity measure, in which the gradient descent method is utilized to iteratively optimize affine transformation parameters. In addition, the template is dynamically updated by computing the geometric mean of covariance matrices in Riemannian manifold for adapting to the appearance changes of the object over time. Experimental results compared with several relevant tracking methods demonstrate the good performance of the proposed algorithm under challenging conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. We manually selected target location in the first frame. Then, the covariance feature \(\varvec{C}_{T}\) extracted from the selected image is considered as the template.

  2. The test sequences are obtained from http://visual-tracking.net/#.

References

  1. Li X, Hu W, Shen C, Zhang Z, Dick A, Hengel AVD (2013) A survey of appearance models in visual object tracking. ACM Trans Intell Syst Technol (TIST) 4(4):58

    Google Scholar 

  2. Adam A, Rivlin E, Shimshoni I (2006) Robust fragments-based tracking using the integral histogram. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’06), vol 1, pp 798–805

  3. Wu Y, Pei M, Yang M, He Y, Jia Y (2014) Landmark-based inductive model for robust discriminative tracking. In: Proceedings of the 12th Asian conference on computer vision (ACCV2014), in press

  4. Ross D, Lim J, Lin R, Yang M (2008) Incremental learning for robust visual tracking. Int J Comput Vis 77(1):125–141

    Article  Google Scholar 

  5. Babenko B, Yang M, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Trans Pattern Anal Mach Intell 33(8):1619–1632

    Article  Google Scholar 

  6. Yao R, Shi Q, Shen C, Zhang Y, van den Hengel A (2013) Part-based visual tracking with online latent structural learning. In: Proceedings of CVPR

  7. Wu Y, Ma B, Yang M, Zhang J, Jia Y (2014) Metric learning based structural appearance model for robust visual tracking. IEEE Trans Circuits Syst Video Technol 24(5):865–877

    Article  Google Scholar 

  8. Mei X, Ling H (2009) Robust visual tracking using \(\ell 1\) minimization. In: Proceedings of 2009 IEEE 12th international conference on computer vision (ICCV’09), pp 1–8

  9. Kwon J, Lee K (2010) Visual tracking decomposition. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’10), pp 1269–1276

  10. Yang M, Zhang C, Wu Y, Pei M, Jia Y (2013) Robust object tracking via online multiple instance metric learning. In: Proceedings of multimedia and expo workshops (ICMEW), 2013 IEEE international conference, pp 1–4

  11. Yang M, Wu Y, Pei M, Ma B, Jia Y (2014) Coupling semi-supervised learning and example selection for online object tracking. In: Proceedings of the 12th Asian conference on computer vision (ACCV2014) (in press)

  12. Arif O, Vela A et al. (2009) Non-rigid object localization and segmentation using eigenspace representation. In: Proceedings of IEEE 12th international conference on computer vision (ICCV’09), IEEE, pp 803–808

  13. Porikli F, Tuzel O, Meer P (2006) Covariance tracking using model update based on lie algebra. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’06), vol 1, pp 728–735

  14. Wu Y, Ma B, Li P (2012) A variational method for contour tracking via covariance matching. Sci China Inf Sci 55(11):2635–2645

    Article  MATH  MathSciNet  Google Scholar 

  15. Tuzel O, Porikli F, Meer P (2008) Pedestrian detection via classification on riemannian manifolds. IEEE Trans Pattern Anal Mach Intell 30(10):1713–1727

    Article  Google Scholar 

  16. Pang Y, Yuan Y, Li X (2008) Gabor-based region covariance matrices for face recognition. IEEE Trans Circuits Syst Video Technol 18(7):989–993

    Article  Google Scholar 

  17. Arsigny V, Fillard P, Pennec X, Ayache N (2006) Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J Matrix Anal Appl 29(1):328–347

    Article  MathSciNet  Google Scholar 

  18. Hartley R (2008) Multiple view geometry in computer vision. Cambridge University Press, Cambridge

    Google Scholar 

  19. Birchfield ST, Rangarajan S (2005) Spatiograms versus histograms for region-based tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’05), vol 2, pp 1158–1163

  20. Comaniciu D, Ramesh V, Meer P (2003) Kernel-based object tracking. IEEE Trans Pattern Anal Mach Intell 25(5):564–575

    Article  Google Scholar 

  21. Wu Y, Ma B (2014) Learning distance metric for object contour tracking. Pattern Anal Appl 17(2):265–277

    Article  MathSciNet  Google Scholar 

  22. Nejhum S, Ho J, Yang M (2010) Online visual tracking with histograms and articulating blocks. Computer Vis Image Underst 114(8):901–914

    Article  Google Scholar 

  23. Zhuang B, Lu H, Xiao Z, Wang D (2014) Visual tracking via discriminative sparse similarity map. Image Process IEEE Trans 23(4):1872–1881

    Article  MathSciNet  Google Scholar 

  24. Yang M, Pei M, Wu Y, Ma B, Jia Y (2013) Online-learning structural appearance model for robust visual tracking. In: Proceedings of intelligence science and big data engineering, Springer, New York. pp 30–39

  25. Li X, Hu W, Zhang Z, Zhang X, Zhu M, Cheng J (2008) Visual tracking via incremental log-euclidean riemannian subspace learning. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’08), vol 0, pp 1–8

  26. Wu Y, Cheng J, Wang J, Lu H (2009) Real-time visual tracking via incremental covariance tensor learning. In: Proceedings of IEEE 12th international conference on computer vision (ICCV’09), pp 1631–1638

  27. Tyagi A, Davis J, Potamianos G (2008) Steepest descent for efficient covariance tracking. In: Proceedings of IEEE workshop on motion and video computing (WMVC’08), IEEE, pp 1–6

  28. Hong X, Chang H, Shan S, Chen X, Gao W (2009) Sigma set: a small second order statistical region descriptor. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’09), pp 1802–1809

  29. Wu Y, Wu B, Liu J, Lu H (2008) Probabilistic tracking on riemannian manifolds. In: Proceedings of 19th international conference on pattern recognition (ICPR’08), IEEE, pp 1–4

  30. Hu H, Qin J, Lin Y, Xu Y (2008) Region covariance based probabilistic tracking. In: Proceedings of 7th world congress on intelligent control and automation (WCICA’08), pp 575–580

  31. Palaio H, Batista J (2008) Multi-object tracking using an adaptive transition model particle filter with region covariance data association. In: Proceedings of 19th international conference on pattern recognition (ICPR’08), pp 1–4

  32. Hager GD, Belhumeur PN (1998) Efficient region tracking with parametric models of geometry and illumination. Pattern Anal Mach Intell IEEE Trans 20(10):1025–1039

    Article  Google Scholar 

  33. Collins R (2003) Mean-shift blob tracking through scale space. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’03), vol 2, pp 234–240

  34. Zivkovic Z, Krose B (2004) An em-like algorithm for color-histogram-based object tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’04), vol 1, pp 798–803

  35. Hu J, Juan C, Wang J (2008) A spatial-color mean-shift object tracking algorithm with scale and orientation estimation. Pattern Recognit Lett 29(16):2165–2173

    Article  Google Scholar 

  36. Zhang H, Huang W, Huang Z, Li L (2005) Affine object tracking with kernel-based spatial-color representation. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’05), vol 1, pp 293–300

  37. Yilmaz A (2011) Kernel based object tracking using asymmetric kernels with adaptive scale and orientation selection. Mach Vis Appl 22(2):255–268

    Article  Google Scholar 

  38. Tuzel O, Porikli F, Meer P (2008) Learning on lie groups for invariant detection and tracking. In: Proceedings of IEEE conference on computer vision and pattern recognition (CVPR’08), pp 1–8

  39. Yang F, Lu H, Chen Y (2010) Bag of features tracking. In: Proceedings of pattern recognition (ICPR), 2010 20th international conference on, IEEE, pp 153–156

Download references

Acknowledgments

This work was supported in part by the Natural Science Foundation of China (NSFC) under Grant No. 61472036, and the Specialized Fund for Joint Building Program of Beijing Municipal Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Ma.

Appendix

Appendix

In this appendix, we describe the first derivative of \({\varvec{C}}_{R} \big (\psi (\varvec{A})\big )\) with respect to \(\varvec{A}\). Since

$$\begin{aligned}&\left( \sum \limits _{i=1}^{N} K(\psi (\varvec{A}))(\varvec{f}(\varvec{X}_{i})-\mu _{R})(\varvec{f}(\varvec{X}_{i})-\mu _{R})^{T} \right) '\\ &\quad= \sum \limits _{i=1}^{N} \left( K^{\prime }(\psi (\varvec{A})) \cdot (\varvec{f}(\varvec{X}_{i})-\mu _{R})(\varvec{f}(\varvec{X}_{i})-\mu _{R})^{T}\right) , \end{aligned}$$

we obtain \(\frac{\partial {\varvec{C}}_{R} (\psi (\varvec{A}))}{\partial \varvec{A}}\) as follows. In Eq. (18), \(K^{\prime }(\psi (\varvec{A}))\) denotes the first derivative of Gaussian kernel function \(K(\psi (\varvec{A}))= \exp (-\frac{1}{2} \Vert \psi (\varvec{A})\Vert ^{2}) \) with respect to affine transformation parameters \(\varvec{A}\).

The first derivative of \(\varvec{K(\psi (\varvec{A}))}\) with respect to translation vector \(\varvec{t}\):

$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial t_{x}} &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial t_{x}}\\ &= \exp ^{-\psi /2} \cdot \left(-\frac{1}{2}\right) \cdot \frac{\partial \psi }{\partial t_{x}}\\ &{}= -K(\psi (\varvec{A})) \\ &\quad \times \Bigg [ \frac{a (x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y})) )}{h_{x}^{2}} \\ &\quad + \frac{c (y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y})) )}{h_{y}^{2}} \Bigg ] , \end{aligned}$$
(19)
$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial t_{y}} &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial t_{y}}\\ &= -K(\psi (\varvec{A}))\\ &\quad \times \Bigg [ \frac{b (x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y})) )}{h_{x}^{2}} \\ &\quad + \frac{d (y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y})) )}{h_{y}^{2}} \Bigg ]. \end{aligned}$$
(20)

The first derivative of \(\varvec{K(\psi (\varvec{A}))}\) with respect to rotation angle \({\varvec{\theta }}\):

$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial \theta } &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial \theta }\\ &= -K(\psi (\varvec{A})) \\ &\quad \times \Bigg [ \frac{ x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y}))}{h_{x}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial a}{\partial \theta } - (y'_{i} - t_{y}) \frac{\partial b}{\partial \theta } }{h_{x}} \\ & \quad + \frac{ y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y}))}{h_{y}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial c}{\partial \theta } - (y'_{i} - t_{y}) \frac{\partial d}{\partial \theta } }{h_{y}} \Bigg ], \end{aligned}$$
(21)

where

$$\begin{aligned} \left\{ \begin{array}{l} \partial a /\partial \theta = -\lambda _{x} \sin \theta \cos \phi - \lambda _{y} \cos \theta \sin \phi \\ \partial b /\partial \theta = \lambda _{x} \cos \theta \cos \phi - \lambda _{y} \sin \theta \sin \phi \\ \partial c /\partial \theta = \lambda _{x} \sin \theta \sin \phi - \lambda _{y} \cos \theta \cos \phi \quad .\\ \partial d /\partial \theta = -\lambda _{x} \cos \theta \sin \phi - \lambda _{y} \sin \theta \cos \phi \end{array} \right. \end{aligned}$$
(22)

The first derivative of \(\varvec{K(\psi (\varvec{A}))}\) with respect to skew direction \(\varvec{\phi }\):

$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial \phi } &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial \phi }\\ &= -K(\psi (\varvec{A})) \\ &{}\quad \times \Bigg [ \frac{ x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y}))}{h_{x}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial a}{\partial \phi } - (y'_{i} - t_{y}) \frac{\partial b}{\partial \phi } }{h_{x}} \\ & \quad + \frac{ y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y}))}{h_{y}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial c}{\partial \phi } - (y'_{i} - t_{y}) \frac{\partial d}{\partial \phi } }{h_{y}} \Bigg ], \end{aligned}$$
(23)

where

$$\begin{aligned} \left\{ \begin{array}{l} \partial a /\partial \phi = -\lambda _{x} \cos \theta \sin \phi - \lambda _{y} \sin \theta \cos \phi \\ \partial b /\partial \phi = -\lambda _{x} \sin \theta \sin \phi + \lambda _{y} \cos \theta \cos \phi \\ \partial c /\partial \phi = -\lambda _{x} \cos \theta \cos \phi + \lambda _{y} \sin \theta \sin \phi \quad .\\ \partial d /\partial \phi = -\lambda _{x} \sin \theta \cos \phi - \lambda _{y} \cos \theta \sin \phi \end{array} \right. \end{aligned}$$
(24)

The first derivative of \(\varvec{K(\psi (\varvec{A}))}\) with respect to scale \(\varvec{\lambda }\):

$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial \lambda _{x}} &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial \lambda _{x}}\\ &= -K(\psi (\varvec{A})) \\ &\quad \times \Bigg [ \frac{ x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y}))}{h_{x}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial a}{\partial \lambda _{x}} - (y'_{i} - t_{y}) \frac{\partial b}{\partial \lambda _{x}} }{h_{x}} \\ & \quad + \frac{ y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y}))}{h_{y}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial c}{\partial \lambda _{x}} - (y'_{i} - t_{y}) \frac{\partial d}{\partial \lambda _{x}} }{h_{y}} \Bigg ], \end{aligned}$$
(25)
$$\begin{aligned} \frac{\partial K(\psi (\varvec{A})) }{\partial \lambda _{y}} &= \frac{\partial K(\psi (\varvec{A})) }{\partial \psi (\varvec{A})} \cdot \frac{\partial \psi (\varvec{A})}{\partial \lambda _{y}}\\ &= -K(\psi (\varvec{A})) \\ &\quad \times \Bigg [ \frac{ x_{c} - ( a(x'_{i} - t_{x}) + b(y'_{i} - t_{y}))}{h_{x}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial a}{\partial \lambda _{y}} - (y'_{i} - t_{y}) \frac{\partial b}{\partial \lambda _{y}} }{h_{x}} \\ & \quad + \frac{ y_{c} - ( c(x'_{i} - t_{x}) + d(y'_{i} - t_{y}))}{h_{y}} \\ & \quad \times \frac{ - (x'_{i} - t_{x}) \frac{\partial c}{\partial \lambda _{x}} - (y'_{i} - t_{y}) \frac{\partial d}{\partial \lambda _{y}} }{h_{y}} \Bigg ], \end{aligned}$$
(26)

where

$$\begin{aligned} \left\{ \begin{array}{l} \partial a /\partial \lambda _{x} = \cos \theta \cos \phi \\ \partial b /\partial \lambda _{x} = \sin \theta \cos \phi \\ \partial c /\partial \lambda _{x} = - \cos \theta \sin \phi \quad ,\\ \partial d /\partial \lambda _{x} = - \sin \theta \sin \phi \end{array} \right. \end{aligned}$$
(27)

and

$$\begin{aligned} \left\{ \begin{array}{l} \partial a /\partial \lambda _{y} = -\sin \theta \sin \phi \\ \partial b /\partial \lambda _{y} = \cos \theta \sin \phi \\ \partial c /\partial \lambda _{y} = - \sin \theta \cos \phi \quad .\\ \partial d /\partial \lambda _{y} = \cos \theta \cos \phi \end{array} \right. \end{aligned}$$
(28)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Ma, B. & Jia, Y. Differential tracking with a kernel-based region covariance descriptor. Pattern Anal Applic 18, 45–59 (2015). https://doi.org/10.1007/s10044-014-0430-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10044-014-0430-6

Keywords

Navigation