Skip to main content
Log in

Terahertz beam reconfigurable phase gradient metasurface of VO2 based on different metal–insulator transition temperatures

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this letter, by using vanadium dioxide (VO2) with metal–insulator transition (MIT) temperatures of 60 ℃ and 72 ℃, respectively, and analyzing the effects of the two states of VO2 before (insulator state) and after (metal state) MIT on the amplitude and phase of the double MIT VO2 (DMITV) unit structure, constituting the terahertz beam reconfigurable phase gradient metasurface of VO2 based on different MIT temperatures, which achieves flexible regulation of terahertz beam. The structure is composed of two different MIT temperature VO2, polytetrafluoroethylene (PTFE) and metal. By changing the external temperature, the structure has different beam deflection angles at different temperatures. At 1.4 THz, when the temperature is below 60 ℃, the beam deflection angle is 0°, when the temperature is between 60 ℃ and 72 ℃, the beam deflection angle is 36° and when the temperature is above 72 ℃, the beam deflection angle is 17°. This terahertz phase gradient metasurface based on VO2 with different MIT temperatures provides a new way to flexibly control terahertz beams, and will have great application prospects in terahertz transmission, imaging, wireless communication, or other fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this article.

References

  1. Li JH, Terahertz coding metasurface based vanadium dioxide. Acta Phys. Sin. 69 (2022)

  2. Zhang, Z.W., Wang, K.J., Lei, Y., et al.: Non-destructive detection of pigments in oil painting by using terahertz tomography. Sci. China-Phys Mech. Astron. (2015). https://doi.org/10.1007/s11433-015-5744-x

    Article  Google Scholar 

  3. Heljo, V.P., Nordberg, A., Tenho, M., et al.: The effect of water plasticization on the molecular mobility and crystallization tendency of amorphous disaccharides. Pharm. Res. 29, 2684–2697 (2012)

    Article  Google Scholar 

  4. Pickwell-MacPherson, E., Cole, B., Fitzgerald, A., Wallace, V., Pepper, M.: Simulation of terahertz pulse propagation in biological systems. Appl. Phys. Lett. (2004). https://doi.org/10.1063/1.1688448

    Article  Google Scholar 

  5. Zhang, X.C.: Three-dimensional terahertz wave imaging. Philos. Transact. A Math. Phys. Eng. Sci. 362, 283–298 (2004)

    Article  Google Scholar 

  6. Jansen, C., Priebe, S., Moller, C., et al.: Diffuse scattering from rough surfaces in THz communication channels. IEEE Trans. Terahertz Sci. Technol. 1, 462–472 (2011)

    Article  ADS  Google Scholar 

  7. Shehata, M., Wang, K., Webber, J., Fujita, M., Nagatsuma, T., Withayachumnankul, W.: IEEE 802.15.3d-compliant waveforms for terahertz wireless communications. J. Lightwave Technol. 39, 7748–7760 (2021)

    Article  ADS  Google Scholar 

  8. Barros, M.T., Mullins, R., Balasubramaniam, S.: Integrated terahertz communication with reflectors for 5G small-cell networks. IEEE Trans. Veh. Technol. 66, 5647–5657 (2017)

    Article  Google Scholar 

  9. Karakoca, E., Kurt, G.K., Gorcin, A.: Hierarchical Dirichlet process based gamma mixture modeling for terahertz band wireless communication channels. IEEE Access. 10, 84635–84647 (2022)

    Article  Google Scholar 

  10. Ji, Y.Y., Jiang, X.H., Fan, F., et al.: Active terahertz beam deflection based on a phase gradient metasurface with liquid crystal-enhanced cavity mode conversion. Opt. Express 31, 1269–1281 (2023)

    Article  ADS  Google Scholar 

  11. Wu, J.B., Shen, Z., Ge, S.J., et al.: Liquid crystal programmable metasurface for terahertz beam steering. Appl. Phys. Lett. (2020). https://doi.org/10.1063/1.5144858

    Article  Google Scholar 

  12. Fu, X.J., Yang, F., Liu, C.X., Wu, X.J., Cui, T.J.: Terahertz beam steering technologies: from phased arrays to field-programmable metasurfaces. Adv. Optical Mater. 8, 1900628 (2020)

    Article  Google Scholar 

  13. Deng, Y., Wu, C., Meng, C., Bozhevolnyi, S.I., Ding, F.: Functional metasurface quarter-wave plates for simultaneous polarization conversion and beam steering. ACS Nano 15, 18532–18540 (2021)

    Article  Google Scholar 

  14. Berini, P.: Optical beam steering using tunable metasurfaces. ACS Photonics 9, 2204–2218 (2022)

    Article  Google Scholar 

  15. Zhuang, X.L., Zhang, W., Wang, K.M., et al.: Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light-Sci. Appl. (2023). https://doi.org/10.1038/s41377-022-01046-6

    Article  Google Scholar 

  16. Fu, X.J., Shi, L., Yang, J., et al.: Flexible terahertz beam manipulations based on liquid-crystal-integrated programmable metasurfaces. ACS Appl. Mater. Interfaces 14, 22287–22294 (2022)

    Article  Google Scholar 

  17. Liu, C.X., Yang, F., Fu, X.J., et al.: Programmable manipulations of terahertz beams by transmissive digital coding metasurfaces based on liquid crystals. Adv. Opt. Mater. (2021). https://doi.org/10.1002/adom.202100932

    Article  ADS  Google Scholar 

  18. Yu, N.F., Genevet, P., Kats, M.A., et al.: Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334, 333–337 (2011)

    Article  ADS  Google Scholar 

  19. Nemati, A., Wang, Q., Hong, M.H., Teng, J.H.: Tunable and reconfigurable metasurfaces and metadevices. Opto-Electron Adv. 1, 25 (2018)

    Article  Google Scholar 

  20. Tian, T., Huang, X., Xu, Y., et al.: A Wideband Energy Selective Surface With Quasi-Elliptic Bandpass Response and High-Power Microwave Shielding. IEEE Trans. Electromagn. Compat. 66(1), 224–233 (2024).https://doi.org/10.1109/TEMC.2023.3325438

    Article  Google Scholar 

  21. Kui, W., Xianjun, H., Tao, T., Wentao, H., Peiguo, L (2024) Design and demonstration of high-power density infrared nonlinear filtering window with EM shielding. Opt. Express. 32(4):5956. https://doi.org/10.1364/OE.511501

    Article  ADS  Google Scholar 

  22. Li, H.P., Wang, G.M., Xu, H.X., Cai, T., Liang, J.G.: X-Band Phase-Gradient Metasurface for High-Gain Lens Antenna Application. IEEE Trans. Antennas Propag.Propag. 63, 5144–5149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Li, F.A., Huang, J.: Non-resonant broadband RCS reduction based on the patch distribution of a phase gradient metasurface. Appl. Optics 62, 720–724 (2023)

    Article  ADS  Google Scholar 

  24. Zhang, J.M., Yang, L., Li, L.P., et al.: High-efficiency polarization conversion phase gradient metasurface for wideband anomalous reflection. J. Appl. Phys. 122, 5 (2017)

    Google Scholar 

  25. Zheng, Q.Q., Li, Y.F., Zhang, J.Q., et al.: Wideband, wide-angle coding phase gradient metasurfaces based on Pancharatnam–Berry phase. Sci. Rep. 7, 13 (2017)

    ADS  Google Scholar 

  26. El Haimeur, A., Mrigal, A., Bakkali, H., et al.: Optical, magnetic, and electronic properties of nanostructured VO2 thin films grown by spray pyrolysis: DFT first principle study. J. Supercond. Nov. Magn.Supercond. Nov. Magn. 33, 511–517 (2020)

    Article  Google Scholar 

  27. Lv, X.R., Cao, Y.Z., Yan, L., Li, Y., Song, L.X.: Atomic layer deposition of VO2 films with Tetrakis-dimethyl-amino vanadium (IV) as vanadium precursor. Appl. Surf. Sci. 396, 214–220 (2017)

    Article  ADS  Google Scholar 

  28. Yan, D.X., Meng, M., Li, J.S., Li, J.N., Li, X.J.: Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave. Opt. Express 28, 29843–29854 (2020)

    Article  ADS  Google Scholar 

  29. Liu, K., Lee, S., Yang, S., Delaire, O., Wu, J.Q.: Recent progresses on physics and applications of vanadium dioxide. Mater. Today 21, 875–896 (2018)

    Article  Google Scholar 

  30. Zhang, Y., Feng, Y., Zhao, J., et al.: Terahertz beam switching by electrical control of graphene-enabled tunable metasurface. Sci. Rep. 7, 14147 (2017)

    Article  ADS  Google Scholar 

  31. Zhang, S., Chen, X., Liu, K., et al.: Nonvolatile reconfigurable terahertz wave modulator. PhotoniX 3, 7 (2022)

    Article  Google Scholar 

  32. Zhuang, X., Zhang, W., Wang, K., et al.: Active terahertz beam steering based on mechanical deformation of liquid crystal elastomer metasurface. Light Sci. Appl. 12, 14 (2023)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of Southwest University of Science and Technology (No. 21zx7126)

Author information

Authors and Affiliations

Authors

Contributions

Jinqi Dong carried out the experiments and contributed to the analysis of the results and to the writing of the manuscript. Qi Chen was involved in planning and supervised the work. Yanqing Chen contributed to the design and implementation of the research, to the analysis of the results and to the writing of the manuscript. Shuyun Lin and Yao Zhou contributed to the analysis of the results and to the writing of the manuscript.

Corresponding author

Correspondence to Yanqing Cheng.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Dong, J., Cheng, Y. et al. Terahertz beam reconfigurable phase gradient metasurface of VO2 based on different metal–insulator transition temperatures. Opt Rev (2024). https://doi.org/10.1007/s10043-024-00879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10043-024-00879-3

Keywords

Navigation