Skip to main content
Log in

Lightness modification method considering chromaticity loss for dichromats

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In recent years, with the development of media equipment, color images have been extensively applied in various domains. However, people with dichromatic or anomalous trichromatic vision have difficulty discriminating the colors that common trichromatic vision would distinguish. To improve image visibility for dichromats, a lightness modification method considering the chromaticity loss was proposed in this study. First, the chromaticity loss was defined for dichromats. Subsequently, an objective function including the chromaticity loss was constructed. To focus on color pairs with a large chromaticity loss, a weight was introduced into the objective function. The objective function was then minimized to obtain output images. Finally, the effectiveness of the proposed method was verified through experiments, which indicated that the proposed method could maintain naturalness for normal trichromats and improve recognition for dichromats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Sharpe L.T., Stockman, A., Jagle, H., Nathans, J.: Opsin genes, cone photopigments, color vision, and color blindness. Color vision: Fromgenes to perception, 3 (1999)

  2. Deeb, S.S.: The molecular basis of variation in human color vision. Clin. Genet. 67, 369–377 (2005)

    Article  CAS  PubMed  Google Scholar 

  3. Neitz, J., Neitz, M.: The genetics of normal and defective color vision. Vision. Res. 51, 633–651 (2011)

    Article  CAS  PubMed  Google Scholar 

  4. Brettel, H., Viénot, F., Mollon, J.D.: Computerized simulation of color appearance for dichromats. JOSA A. 14(10), 2647–2655 (1997)

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Judd, D.B.: Color perceptions of deuteranopic and protanopic observers. J. Res. Natl. Bur. Stand. 41, 247–271 (1948)

    Article  CAS  Google Scholar 

  6. Alpern, M., Kitahara, K., Krantz, D.H.: Perception of colour in unilateral tritanopia. J. Physiol. 335, 683–697 (1983)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Viénot, F., Brettel, H., Mollon, J.D.: Digital video colourmaps for checking the legibility of displays by dichromats. Color. Res. Appl. 24(4), 243–252 (1999)

    Article  Google Scholar 

  8. Machado, G.M., Oliveira, M.M., Fernandes, L.A.: A physiologically-based model for simulation of color vision deficiency. IEEE Trans. Vis. Comput. Graph. 15(6), 1291–1298 (2009)

    Article  PubMed  Google Scholar 

  9. Yaguchi, H., Luo, J., Kato, M., Mizokami, Y.: Computerized simulation of color appearance for anomalous trichromats using the multispectral image. JOSA A. 35(4), 278–286 (2018)

    Article  Google Scholar 

  10. Nagai, T., Shinoda, H., Yamaguchi, H., Rattanakasamsuk, K.: Estimation and verification of the optimum spectrum for color-barrier-free illumination. Nihon Shikisai Gakkaishi. 33, 76–77 (2009). (in Japanese)

    Google Scholar 

  11. Tamura, S., Hiraga, T.: Primary experiment of color-barrier-free illumination. Nihon Shikisai Gakkaishi. 35, 106–107 (2011) (in Japanese)

  12. Tamura, S.: Practical color-barrier-free illumination. Nihon Shikisai Gakkaishi. 36, 124 (2012). (in Japanese)

    Google Scholar 

  13. Bao, S., Tanaka, G., Tajima, J.: Fundamental study of illumination transformation for color vision deficiencies. Opt. Rev. 22(1), 79–92 (2015)

    Article  Google Scholar 

  14. Ichikawa, M., Tanaka, K., Kondo, S., Hiroshima, K., Ichikawa, K., Tanabe, S., Fukami, K.: Web-page color modification for barrier-free color vision with genetic algorithm. Lect. Notes Comput. Sci. 2724, 2134–2146 (2003)

    Article  Google Scholar 

  15. Rasche, K., Geist, R., Westall, J.: Detail preserving reproduction of color images for monochromats and dichromats. IEEE Comput. Graph. Appl. 25(3), 22–30 (2005)

    Article  PubMed  Google Scholar 

  16. Rasche, K., Geist, R., Westall, J.: Re-coloring image for gamuts of lower dimension. Comput. Graph. Forum. 24(3), 423–432 (2005)

    Article  Google Scholar 

  17. Wakita, K., Shimamura, K.: SmartColor: disambiguation framework for the colorblind. In: Proc. 7th Int. ACM SIGACCESS Conf. Computers and Accessibility, pp. 158–165 (2005)

  18. Iaccarino, G., Malandrino, D., Percio, M.D., Scarano, V.: Efficient edge-services for colorblind users. In: Proc. ACM Press. 15th International Conference on World Wide Web, pp. 919–920 (2006)

  19. Huang, J.B., Tseng, Y.C., Wu, S.I., Wang, S.J.: Information preserving color transformation for protanopia and deuteranopia. IEEE Signal Process. Lett. 14(10), 711–714 (2007)

    Article  ADS  Google Scholar 

  20. Anagnostopoulos, C.-N., Tsekouras, G., Anagnostopoulos, I., Kalloniatis, C.: Intelligent modification for the daltonization process of digitized paintings. In: Proc. 5th International Conference on Computer Vision Systems, pp. 1–10 (2007)

  21. Jefferson, L. Harvey, R.: An interface to support color blind computer users. In: Proc. ACM SIGCHI, pp. 1535–1538 (2007)

  22. Nakauchi, S., Onouchi, T.: Detection and modification of confusing color combinations for red-green dichromats to achieve a color universal design. Color Res. Appl. 33(3), 203–211 (2008)

    Article  Google Scholar 

  23. Huang, J. B., Wu, S. Y., Chen, C. S.: Enhancing color representation for the color vision impaired. In: Proc. Workshop Computer Vision Applications for the Visually Impaired, pp. 1–12 (2008)

  24. Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.F.: An efficient naturalness-preserving image-recoloring method for dichromats. IEEE Trans. Vis. Comput. Graphics. 14(6), 1747–1754 (2008)

    Article  Google Scholar 

  25. Huang, J.B., Chen, C.S., Jen, T.C., Wang, S.J.: Image recolorization for the colorblind. In: Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing, pp. 1161–1164 (2009)

  26. Tanaka, G., Suetake, N., Uchino, E.: Lightness modification of color image for protanopia and deuteranopia. Opt. Rev. 17(1), 14–23 (2010)

    Article  Google Scholar 

  27. Huang, C.R., Chiu, K.C., Chen, C.S.: Key color priority based image recoloring for dichromats. Proc. Adv. Multimed. Inf. Process. PCM 2010, 637–647 (2011)

    Google Scholar 

  28. Tanaka, G., Suetake, N., Uchino, E.: Yellow-blue component modification of color image for protanopia or deuteranopia. IEICE Trans. Fundamentals of Electronics, Communications and Computer Sciences, E94-A(2), pp.884–888 (2011)

  29. Jeong, J.Y., Kim, H.J., Kim, Y.H., Wang, T.S., Ko, S.J.: Enhanced re-coloring method with an information preserving property for color-blind person. In: Proc. IEEE Int. Conf. Consumer Electronics, pp. 600–601 (2012)

  30. Flatla, D. R., Gutwin, C.: “So that?s what you see!”: building understanding with personalized simulations of colour vision deficiency. In: Proc. ACM SIGACCESS Conference on Computers and Accessibility, pp. 167–174 (2012)

  31. Takimoto, H., Yamauchi, H., Jindai, M., Kanagawa, A.: Modification of indistinguishable colors for people with color vision deficiency. J. Signal Process. 16(6), 587–592 (2012)

    Article  Google Scholar 

  32. Flatla, D. R., Reinecke, K., Gutwin, C., Gajos, K. Z.: SPRWeb: Preserving subjective responses to website colour schemes through automatic recolouring. In: Proc. ACM SIGCHI Conference on Human Factors in Computing Systems, pp. 2069–2078 (2013)

  33. Milic, N., Hoffmann, M., Tomacs, T., Novakovic, D., Milosavljevic, B.: A content-depenent naturalness-preserving daltonization method for dichromatic and anomalous trichromatic color vision deficiencies. J. Imaging Sci. Technol. 59(1), 105041–1050410 (2015)

    Article  Google Scholar 

  34. Tennenholtz, G., Zachevsky, I.: Natural contrast enhancement for dichromats using similarity maps. In: Proc. 2016 IEEE International Conference on the Science of Electrical Engineering (ICSEE), pp 1-5 (2016)

  35. Hassan, M.F., Paramesran, R.: Signal Processing. Image Commun. 57, 126–133 (2017)

    Google Scholar 

  36. Lin, H.Y., Chen, L.Q., Wang, M.L.: Improving discrimination in color vision deficiency by image re-coloring. Sensors. 19(10), 2250–2268 (2019)

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  37. Hassan, M.F.: Flexible color contrast enhancement method for red-green deficiency. Multidimension. Syst. Signal Process. 30(4), 1975–1989 (2019)

    Article  Google Scholar 

  38. Zhu, Z., Toyoura, M., Go, K., Fujishiro, I., Kashiwagi, K., Mao, X.: Processing images for red-green dichromats compensation via naturalness and information-preservation considered recoloring. Vis. Comput. 5(6–8), 1053–1066 (2019)

    Article  Google Scholar 

  39. Zhu, Z., Toyoura, M., Go, K., Fujishiro, I., Kashiwagi, K., Mao, X.: Naturalness-and information-preserving image recoloring for red-greendichromats. Signal Process. Image Commun. 76, 68–80 (2019)

    Article  Google Scholar 

  40. Meng, M., Tanaka, G.: Lightness modification method considering visual characteristics of protanopia and deuteranopia. Opt. Rev. 27(6), 548–560 (2020)

    Article  Google Scholar 

  41. Wyszecki, G., Stiles, W.S.: Color Science: Concepts and Methods. Quantitative Data and Formulae. Wiley, New York (2000)

    Google Scholar 

Download references

Acknowledgements

This study was supported by National Natural Science Foundation of China (62066035), Natural Science Foundation of Inner Mongolia Autonomous Region (2022LHMS06004), the Basic Scientific Research Business Fee Project of the Universities Directly Under the Inner Mongolia Autonomous Region (JY20230110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi Bao.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, S., Yan, X. Lightness modification method considering chromaticity loss for dichromats. Opt Rev (2024). https://doi.org/10.1007/s10043-024-00870-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10043-024-00870-y

Keywords

Navigation