Skip to main content

Advertisement

Log in

Smart inverters with broadband light absorption enhancement of nanostructure plasmonic solar absorber using PSO algorithms and FDTD method

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Solar plasmonics absorbers have received outstanding interest from nanotechnology. However, they have small efficiency. To overcome this challenge, we have used two ways in this proposed paper. In the first method, two types of nanoparticle including gold and silver are used on the superstate silica layer in the form of an insulating metal structure. Additionally, to analyze the structure, finite difference time domain (FDTD) is proposed. As a result, at all wavelengths, more than 50% of sunlight will be absorbed. On the other hand, by combining the light to the boundary between nanoparticles and insulation and applying optimization method in Lumerical software, surface plasmons will be stimulated and the possibility of modeling in nanodimensions is provided. It was clearly obvious that by increasing the diameter of the nanoparticles from 10 to 15 nm the amount of light absorption is increased, and by reaching the diameter nanoparticles to 20 nm, light absorption decreases. Regarding to the standard account (100 mW cm2, AM 1.5), maximum short-circuit current of 20 mA, open-circuit voltage of 0.65 V and filling coefficient 60 percent, the amount of light conversion will be 8.45%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ansari, F., et al.: Long-term durability of bromide-incorporated perovskite solar cells via a modified vapor-assisted solution process. ACS Appl. Energy Mater. 1(11), 6018–6026 (2018)

    Article  Google Scholar 

  2. Wang, H., Alshehri, H., Su, H., Wang, L.: Design, fabrication and optical characterizations of large-area lithography-free ultrathin multilayer selective solar coatings. excellent thermal stability in air. Sol. Energy Mater. Sol. Cells 174, 445–452 (2018)

    Article  Google Scholar 

  3. Heidarzadeh, H., et al.: Design criteria for silicon nanostructures in silicon based triple junction solar cell. Opt. Quant. Electron 48(11), 510 (2016)

    Article  Google Scholar 

  4. Jangjoy, A., Bahador, H., Heidarzadeh, H.: Design of an ultra-thin silicon solar cell using Localized Surface Plasmonic effects of embedded paired nanoparticles. Opt. Commun. 450, 216–221 (2019)

    Article  ADS  Google Scholar 

  5. Heidarzadeh, H.: Transition metal-doped 3C-SiC as a promising material for intermediate band solar cells. Opt. Quant. Electron 51(1), 32 (2019)

    Article  Google Scholar 

  6. Daryani, M., et al.: High efficiency solar cells using quantum interferences. Opt. Quant. Electron 49(7), 255 (2017)

    Article  Google Scholar 

  7. Heidarzadeh, H., et al.: A new proposal for Si tandem solar cell: significant efficiency enhancement in 3C–SiC/Si. Optik Int. J. Light Electron. Opt 125(3), 1292–1296 (2014)

    Article  Google Scholar 

  8. Doriani, M., Dehdashti Jahromi, H., Sheikhi, M.H.: A highly efficient thin film CuInGaSe2 solar cell. J. Sol. Energy Eng. 137(6), 064501 (2015)

    Article  Google Scholar 

  9. Danaie, M., Shahzadi, A.: Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6), 1453–1465 (2019)

    Article  Google Scholar 

  10. Geravand, A., Sharbati, S., Danaie, M.: Optimize parameters of new fabricated n-CdTe/p-CdTe solar cell. In: 2017 Iranian Conference on Electrical Engineering (ICEE). IEEE, pp. 412–416 (2017)

  11. Heidarzadeh, H., Tavousi, A.: Performance enhancement methods of an ultra-thin silicon solar cell using different shapes of back grating and angle of incidence light. Mater. Sci. Eng. B 240, 1–6 (2019)

    Article  Google Scholar 

  12. Nejand, A., Bahram, V.A., Shahverdi, H.R.: New physical deposition approach for low cost inorganic hole transport layer in normal architecture of durable perovskite solar cells. ACS Appl. Mater. Interfaces 7(39), 21807–21818 (2015)

    Article  Google Scholar 

  13. Ghahremanirad, E., et al.: Improving the performance of perovskite solar cells using kesterite mesostructure and plasmonic network. Sol. Energy 169, 498–504 (2018)

    Article  ADS  Google Scholar 

  14. Ghahremanirad, E., et al.: "Hexagonal array of mesoscopic HTM-based perovskite solar cell with embedded plasmonic nanoparticles. Phys. Status Solidi 255(3), 1700291 (2018)

    Article  Google Scholar 

  15. Najafi, L., et al.: "Mos2 quantum dot/graphene hybrids for advanced interface engineering of a ch3nh3pbi3 perovskite solar cell with an efficiency of over 20%. ACS Nano 12(11), 10736–10754 (2018)

    Article  Google Scholar 

  16. Teymourinia, H., et al.: "Facile synthesis of graphene quantum dots from corn powder and their application as down conversion effect in quantum dot-dye-sensitized solar cell. J. Mol. Liq. 251, 267–272 (2018)

    Article  Google Scholar 

  17. Moosakhani, S., et al.: "Platelet CuSbS2 particles with a suitable conduction band position for solar cell applications. Mater. Lett. 215, 157–160 (2018)

    Article  Google Scholar 

  18. Zamiri, G., Bagheri, S.: Fabrication of green dye-sensitized solar cell based on ZnO nanoparticles as a photoanode and graphene quantum dots as a photo-sensitizer. J. Colloid Interface Sci. 511, 318–324 (2018)

    Article  ADS  Google Scholar 

  19. Yavari, M., et al.: "Greener, nonhalogenated solvent systems for highly efficient perovskite solar cells. Adv. Energy Mater. 8(21), 1800177 (2018)

    Article  ADS  Google Scholar 

  20. Gholizadeh, A., et al.: Enhancement of Si solar cell efficiency using ZnO nanowires with various diameters. Matter Res. Express 5(1), 015040 (2018)

    Article  ADS  Google Scholar 

  21. Imahori, H., Umeyama, T., Ito, S.: Large π-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells. Acc. Chem. Res. 42(11), 1809–1818 (2009)

    Article  Google Scholar 

  22. Qarony, W., Hossain, M.I., Hossain, M.K., Uddin, M.J., Haque, A., Saad, A.R., Tsang, Y.H.: Efficient amorphous silicon solar cells: characterization, optimization, and optical loss analysis. Results Phys. 7, 4287–4293 (2017)

    Article  ADS  Google Scholar 

  23. Blakers, A., Zin, N., McIntosh, K.R., Fong, K.: High efficiency silicon solar cells. Energy Procedia 33, 1–10 (2013)

    Article  Google Scholar 

  24. De La Mora, M.B., Amelines-Sarria, O., Monroy, B.M., Hernández-Pérez, C.D., Lugo, J.E.: Materials for downconversion in solar cells: perspectives and challenges. Sol. Energy Mater. Sol. Cells 165, 59–71 (2017)

    Article  Google Scholar 

  25. Feldmann, F., Bivour, M., Reichel, C., Hermle, M., Glunz, S.W.: Passivated rear contacts for high-efficiency n-type Si solar cells providing high interface passivation quality and excellent transport characteristics. Sol. Energy Mater. Sol. Cells 120, 270–274 (2014)

    Article  Google Scholar 

  26. Holman, Z.C., Filipič, M., Lipovšek, B., De Wolf, S., Smole, F., Topič, M., Ballif, C.: Parasitic absorption in the rear reflector of a silicon solar cell: Simulation and measurement of the sub-bandgap reflectance for common dielectric/metal reflectors. Sol. Energy Mater. Sol. Cells 120, 426–430 (2014)

    Article  Google Scholar 

  27. Mack, I., Stuckelberger, J., Wyss, P., Nogay, G., Jeangros, Q., HorzelLöper, J.P.: Properties of mixed phase silicon-oxide-based passivating contacts for silicon solar cells. Sol. Energy Mater. Sol. Cells 181, 9–14 (2018)

    Article  Google Scholar 

  28. Sharma, V., Kumar, P., Kumar, A., Asokan, K., Sachdev, K.: High-performance radiation stable ZnO/Ag/ZnO multilayer transparent conductive electrode. Sol. Energy Mater. Sol. Cells 169, 122–131 (2017)

    Article  Google Scholar 

  29. Taguchi, M., Yano, A., Tohoda, S., Matsuyama, K., Nakamura, Y., Nishiwaki, T., Maruyama, E.: 24.7% record efficiency HIT solar cell on thin silicon wafer. IEEE. J. Photovolt. 4(1), 96–99 (2013)

    Article  Google Scholar 

  30. Yamamoto, K., Yoshikawa, K., Uzu, H., Adachi, D.: High-efficiency heterojunction crystalline Si solar cells. Jpn. J. Appl. Phys. 57(8), 08RB20 (2018)

    Article  Google Scholar 

  31. Masuko, K., Shigematsu, M., Hashiguchi, T., Fujishima, D., Kai, M., YoshimuraYamanishi, N.T.: Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell. IEEE J. Photovolt. 4(6), 1433–1435 (2014)

    Article  Google Scholar 

  32. Richter, A., Benick, J., Feldmann, F., Fell, A., Hermle, M., Glunz, S.W.: n-Type Si solar cells with passivating electron contact: Identifying sources for efficiency limitations by wafer thickness and resistivity variation. Sol. Energy Mater. Sol. Cells 173, 96–105 (2017)

    Article  Google Scholar 

  33. Hussain, B., Ebong, A., Ferguson, I.: Zinc oxide as an active n-layer and antireflection coating for silicon based heterojunction solar cell. Sol. Energy Mater. Sol. Cells 139, 95–100 (2015)

    Article  Google Scholar 

  34. Grabmann, M., Wallner, G., Grabmayer, K., Buchberger, W., Nitsche, D.: Effect of thickness and temperature on the global aging behavior of polypropylene random copolymers for seasonal thermal energy storages. Sol. Energy 172, 152–157 (2018)

    Article  ADS  Google Scholar 

  35. Ho, W.J., Sue, R.S., Lin, J.C., Syu, H.J., Lin, C.F.: Optical and electrical performance of MOS-structure silicon solar cells with antireflective transparent ITO and plasmonic indium nanoparticles under applied bias voltage. Materials 9(8), 682 (2016)

    Article  ADS  Google Scholar 

  36. Li, W., Wu, T., Jiao, R., Zhang, B.P., Li, S., Zhou, Y., Li, L.: Effects of silver nanoparticles on the firing behavior of silver paste on crystalline silicon solar cells. Colloids Surf. A 466, 132–137 (2015)

    Article  Google Scholar 

  37. Ko, M.D., Rim, T., Kim, K., Meyyappan, M., Baek, C.K.: High efficiency silicon solar cell based on asymmetric nanowire. Sci. Rep. 5, 11646 (2015)

    Article  ADS  Google Scholar 

  38. Ghosh, H., Mitra, S., Siddiqui, M.S., Saxena, A.K., Chaudhuri, P., Saha, H., Banerjee, C.: Back scattering involving embedded silicon nitride (SiN) nanoparticles for c-Si solar cells. Opt. Commun. 413, 63–72 (2018)

    Article  ADS  Google Scholar 

  39. Movla, H., et al.: "Photocurrent and surface recombination mechanisms in the In_xGa_ 1–x N\slashGaN different-sized quantum dot solar cells. Turk. J. Phys. 34(2), 97–106 (2011)

    Google Scholar 

  40. Gorji, N., Es’haghi, et al.: "The effects of recombination lifetime on efficiency and J-V characteristics of InxGa1− xN/GaN quantum dot intermediate band solar cell. Physica E 42(9), 2353–2357 (2010)

    Article  ADS  Google Scholar 

  41. Yang, L., Yu, X., Hu, W., Wu, X., Zhao, Y., Yang, D.: An 8.68% efficiency chemically-doped-free graphene–silicon solar cell using silver nanowires network buried contacts. ACS Appl. Mater. Interfaces 7(7), 4135–4141 (2015)

    Article  Google Scholar 

  42. Xu, Z., Qiao, H., Huangfu, H., Li, X., Guo, J., Wang, H.: Optical absorption of several nanostructures arrays for silicon solar cells. Opt. Commun. 356, 526–529 (2015)

    Article  ADS  Google Scholar 

  43. Saravanan, S., Dubey, R.S.: Optical absorption enhancement in 40 nm ultrathin film silicon solar cells assisted by photonic and plasmonic modes. Opt. communi. 377, 65–69 (2016)

    Article  ADS  Google Scholar 

  44. Azad, A.K., Kort-Kamp, W.J., Sykora, M., Weisse-Bernstein, N.R., Luk, T.S., Taylor, A.J., Chen, H.T.: Metasurface broadband solar absorber. Sci. Rep. 6, 20347 (2016)

    Article  ADS  Google Scholar 

  45. Han, S., Shin, J.H., Jung, P.H., Lee, H., Lee, B.J.: Broadband solar thermal absorber based on optical metamaterials for high-temperature applications. Adv. Opt. Mater. 4(8), 1265–1273 (2016)

    Article  Google Scholar 

  46. Farmani, A.: Three-dimensional FDTD analysis of a nanostructured plasmonic sensor in the near-infrared range. JOSA B 36(2), 401–407 (2019)

    Article  ADS  Google Scholar 

  47. Moradiani, F., Farmani, A., Mozaffari, M.H., Seifouri, M., Abedi, K.: Systematic engineering of a nanostructure plasmonic sensing platform for ultrasensitive biomaterial detection. Opt. Commun. 474, 126178 (2020)

    Article  Google Scholar 

  48. Amoosoltani, N., Yasrebi, N., Farmani, A., Zarifkar, A.: A plasmonic nano-biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect. IEEE Sens. J. 20(16), 9097–9104 (2020)

    Article  ADS  Google Scholar 

  49. Mozaffari, M.H., Farmani, A.: On-chip single-mode optofluidic microresonator dye laser sensor. IEEE Sens. J. 20(7), 3556–3563 (2019)

    Article  ADS  Google Scholar 

  50. Farmani, A., Soroosh, M., Mozaffari, M.H., Daghooghi, T.: Optical nanosensors for cancer and virus detections. In: Han, B., Tomer, V.K., Nguyen, T.A., Farmani, A., Singh, P.K. (eds.) Nanosensors for Smart Cities, pp. 419–432. Elsevier (2020)

    Chapter  Google Scholar 

  51. Amoosoltani, N., Zarifkar, A., Farmani, A.: Particle swarm optimization and finite-difference time-domain (PSO/FDTD) algorithms for a surface plasmon resonance-based gas sensor. J. Comput. Electron. 18(4), 1354–1364 (2019)

    Article  Google Scholar 

  52. Han, B., Tomer, V., Nguyen, T.A., Farmani, A., Singh, P.K. (eds.): Nanosensors for Smart Cities. Elsevier, (2020)

  53. Amoosoltani, N., Mehrabi, K., Zarifkar, A., Farmani, A., Yasrebi, N.: Double-ring resonator plasmonic refractive index sensor utilizing dual-band unidirectional reflectionless propagation effect. Plasmonics 16(4), 1277–1285 (2021)

    Article  Google Scholar 

  54. Khosravian, E., Mashayekhi, H.R., Farmani, A.: Tunable plasmonics photodetector in near-infrared wavelengths using graphene chemical doping method. AEU Int. J. Electron. Commun. 127, 153472 (2020)

    Article  Google Scholar 

  55. Farmani, H., Farmani, A.: Graphene sensing nanostructure for exact graphene layers identification at terahertz frequency. Physica E 124, 114375 (2020)

    Article  Google Scholar 

  56. Ogawa, S., Kimata, M.: Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11(3), 458 (2018)

    Article  ADS  Google Scholar 

  57. Li, Y., Li, D., Zhou, D., Chi, C., Yang, S., Huang, B.: Efficient, scalable, and high-temperature selective solar absorbers based on hybrid-strategy plasmonic metamaterials. Solar RRL 2(8), 1800057 (2018)

    Article  Google Scholar 

  58. Huang, Z., Li, S., Cui, X., Wan, Y., Xiao, Y., Tian, S., Lee, C.S.: A broadband aggregation-independent plasmonic absorber for highly efficient solar steam generation. J. Mater. Chemis. A 8(21), 10742–10746 (2020)

    Article  Google Scholar 

  59. Raeen, M.S., Nella, A., Rajagopal, M.: Design and analysis of a miniaturized UWB plasmonic absorber in visible light spectrum. Optik (2022). https://doi.org/10.1016/j.ijleo.2022.169090

    Article  Google Scholar 

  60. Wang, Y., Chen, K., Lin, Y.S., Yang, B.R.: Plasmonic metasurface with quadrilateral truncated cones for visible perfect absorber. Physica E 139, 115140 (2022)

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies.

Data availability and materials.

All data included in this paper are available upon request by contact with the contact corresponding author.

Author information

Authors and Affiliations

Authors

Contributions

AF and AH took part in validation, data curation, writing—original draft.

Corresponding author

Correspondence to Ali Farmani.

Ethics declarations

Conflict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

This is a numerical study on plasmonics solar cell.

Consent to publish

All authors of this paper agree to publish our theoretical research.

Consent to participate

This is a theoretical study on design of plasmonics solar cell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farmani, A., Hamidi, A. Smart inverters with broadband light absorption enhancement of nanostructure plasmonic solar absorber using PSO algorithms and FDTD method. Opt Rev 29, 327–334 (2022). https://doi.org/10.1007/s10043-022-00749-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-022-00749-w

Keywords

Navigation