Skip to main content
Log in

Phase imaging based on modified transport of intensity equation using liquid crystal variable retarder with partial coherent illumination

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we demonstrate a non-interferometric phase imaging technique based on modified transport of intensity equation (TIE) through a liquid crystal variable retarder (LCVR) and partial coherent illumination. The LCVR has been used in pure phase shifter configuration for creating refractive index variation. The modified TIE eliminates the need of mechanical displacement of camera or object, since it needs recording of only two intensity images with different refractive indices. A light-emitting diode (LED) has been used as a light source to avoid the usual speckle problems in coherent imaging. Although LCVR is a versatile device, its application towards phase recovery is less studied. The applicability of the method has been demonstrated through imaging a USAF resolution chart, ultra-violet glue drop, micro-lens, and onion’s peel. The result of onion’s peel has also been compared with a commercial bright-field microscope.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Goodman, J.W.: Introduction to Fourier Optics. Roberts and Company Publishers, Colardo, USA (2005)

    Google Scholar 

  2. Fienup, J.R.: Phase retrieval algorithms: a personal tour. Appl. Opt. 52, 45–56 (2013)

    Article  ADS  Google Scholar 

  3. Kim, M.K.: Principles and techniques of digital holographic microscopy. SPIE Rev. 1, 018005 (2010)

    Google Scholar 

  4. Nishchal, N.K., Joseph, J., Singh, K.: Full phase encryption using digital holography. Opt. Eng. 43, 2656–2966 (2004)

    Google Scholar 

  5. Khare, K., Ali, P.T.S., Joseph, J.: Single shot high resolution digital holography. Opt. Express 21, 2581–2591 (2013)

    Article  ADS  Google Scholar 

  6. Zheng, G., Horstmeyer, R., Yang, C.: Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7, 739–745 (2013)

    Article  ADS  Google Scholar 

  7. Shechtman, Y., Eldar, Y.C., Cohen, O., Chapman, H.N.: Phase retrieval with application to optical imaging. IEEE Sig. Proc. Magazine 32, 87–109 (2015)

    Article  ADS  Google Scholar 

  8. Guo, C., Liu, S., Sheridan, J.T.: Iterative phase retrieval algorithms I: optimization. Appl. Opt. 54, 4698–4708 (2015)

    Article  ADS  Google Scholar 

  9. Gopinathan, U., Situ, G., Naughton, T.J., Sheridan, J.T.: Non-interferometric phase retrieval using a fractional Fourier system. J. Opt. Soc. Am. A25, 108–115 (2008)

    Article  ADS  Google Scholar 

  10. Schnars, U., Juptner, W.: Digital recording and numerical reconstruction of holograms. Inst. Phys. Publ. 13, R85–R101 (2002)

    Google Scholar 

  11. Maiden, A.M., Rodenburg, J.M.: An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109, 1256–1262 (2009)

    Article  Google Scholar 

  12. Teague, M.R.: Deterministic phase retrieval: a Green’s function solution. J. Opt. Soc. Am. 73, 1434–1441 (1983)

    Article  ADS  Google Scholar 

  13. Pitkäaho, T., Pitkäkangas, V., Niemelä, M., Rajput, S.K., Nishchal, N.K., Naughton, T.J.: Space-variant video compression and processing in digital holographic microscopy sensor networks with application to potable water monitoring. Appl. Opt. 57, E190–E198 (2018)

    Article  ADS  Google Scholar 

  14. Banerjee, P., Basunia, M., Poon, T.-C., Zhang, H.: An optimized transport-of-intensity solution for phase imaging. Proc. SPIE 9870, 98700A (2016)

    Article  ADS  Google Scholar 

  15. Zuo, C., Chen, Q., Qu, W., Asundi, A.: High-speed transport-of-intensity phase microscopy with an electrically tuneable lens. Opt. Express 21, 24060–24075 (2013)

    Article  ADS  Google Scholar 

  16. Nguyen, T., Nehmetallah, G.: Non-interferometric tomography of phase objects using spatial light modulators. J. Imaging 2, 1–16 (2016)

    Google Scholar 

  17. Mayo, S., Davis, T., Gureyev, T., Miller, P., Paganin, D., Pogany, A., Stevenson, A., Wilkins, S.: X-ray phase-contrast microscopy and microtomography. Opt. Express 11, 2289–2302 (2003)

    Article  ADS  Google Scholar 

  18. Singh, M., Khare, K.: Single-shot full resolution region-of-interest (ROI) reconstruction in image plane digital holographic microscopy. J. Mod. Opt. 65, 1127–1134 (2018)

    Article  ADS  Google Scholar 

  19. Cogswell, C.J., Sheppard, C.J.R.: Confocal differential interference contrast (DIC) microscopy: including a theoretical analysis of conventional and confocal DIC imaging. J. Microsc. 165, 81–101 (1992)

    Article  Google Scholar 

  20. Panezai, S., Zhao, J., Wang, Y., Wang, D., Rong, L.: Speckle suppression in off-axis lensless Fourier transform digital holography. Opt. Commun. 397, 100–104 (2017)

    Article  ADS  Google Scholar 

  21. Ferraro, P., Wax, A., Zalevsky, Z. (eds.): Coherent Light Microscopy. Springer, Heidelberg (2011)

    Google Scholar 

  22. Matoba, O., Quan, X., Xia, P., Awatsuji, Y., Nomura, T.: Multimodal imaging based on digital holography. Proc. IEEE 105, 906–923 (2017)

    Article  Google Scholar 

  23. Nehmetallah, G., Banerjee, P.P.: Applications of digital and analog holography in three-dimensional imaging. Adv. Opt. Photon. 4, 472–553 (2012)

    Article  Google Scholar 

  24. Montresor, S., Picart, P.: Quantitative appraisal for noise reduction in digital holographic phase imaging. Opt. Express 24, 14322–14343 (2016)

    Article  ADS  Google Scholar 

  25. Samsheerali, P.T., Khare, K., Joseph, J.: Quantitative phase imaging with single shot digital holography. Opt. Commun. 319, 85–89 (2014)

    Article  ADS  Google Scholar 

  26. Liu, J.-P., Tahara, T., Hayasaki, Y., Poon, T.-C.: Incoherent digital holography: a review. Appl. Sci. 8, 1–18 (2018)

    Article  Google Scholar 

  27. Kumar, D., Nishchal, N.K.: Synthesis and reconstruction of multi-plane phase only holograms. Optik 127, 12069–12077 (2016)

    Article  ADS  Google Scholar 

  28. Vijayakumar, A., Rosen, J.: Interferenceless coded aperture correlation holography–a new technique for recording incoherent digital holograms without two-wave interference. Opt. Express 25, 13883–13896 (2017)

    Article  ADS  Google Scholar 

  29. Sun, J., Chen, Q., Zhang, J., Fan, Y., Zuo, C.: Single-shot quantitative phase microscopy based on color-multiplexed Fourier ptychography. Opt. Lett. 43, 3365 (2018)

    Article  ADS  Google Scholar 

  30. Almoro, P.F., Waller, L., Agour, M., Falldorf, C., Pedrini, G., Osten, W., Hanson, S.G.: Enhanced deterministic phase retrieval using a partially developed speckle field. Opt. Lett. 37, 2088–2090 (2012)

    Article  ADS  Google Scholar 

  31. Komuro, K., Nomura, T., Yamazaki, Y.: Transport of intensity phase imaging for pure phase objects in computational ghost imaging. Proc. SPIE 10816, 108160G (2018)

    Google Scholar 

  32. Zuo, C., Sun, J., Li, J., Zhang, J., Asundi, A., Chen, Q.: High-resolution transport-of-intensity quantitative phase microscopy with annular illumination. Sci. Rep. 7, 1–22 (2017)

    Article  ADS  Google Scholar 

  33. Martinez-Carranza, J., Falaggis, K., Kozacki, T.: Fast and accurate phase-unwrapping algorithm based on the transport of intensity equation. Appl. Opt. 56, 7079–7088 (2017)

    Article  ADS  Google Scholar 

  34. Waller, L., Kou, S.S., Sheppard, C.J.R., Barbastathis, G.: Phase from chromatic aberrations. Opt. Express 18, 22817–22825 (2010)

    Article  ADS  Google Scholar 

  35. Camacho, L., Micó, V., Zalevsky, Z., García, J.: Quantitative phase microscopy using defocusing by means of a spatial light modulator. Opt. Express 18, 6755–6766 (2010)

    Article  ADS  Google Scholar 

  36. Zuo, C., Chen, Q., Qu, W., Asundi, A.: Noninterferometric single-shot quantitative phase microscopy. Opt. Lett. 38, 3538–3541 (2013)

    Article  ADS  Google Scholar 

  37. Komuro, K., Nomura, T.: Quantitative phase imaging using transport of intensity equation with multiple bandpass filters. Appl. Opt. 55, 5180–5186 (2016)

    Article  ADS  Google Scholar 

  38. Chen, C.-H., Hsu, H.-F., Chen, H.-R., Hsieh, W.-F.: Non-interferometric phase retrieval using refractive index manipulation. Sci. Rep. 7, 1–8 (2017)

    Article  ADS  Google Scholar 

  39. Gupta, A.K., Fatima, A., Nishchal, N.K.: Phase imaging based on transport of intensity equation using liquid crystal variable waveplate. In: Digital Holography and Three-dimensional Imaging, OSA Technical Digest, paper M5B.4 (2019)

  40. Zysk, A.M., Schoonover, R.W., Carney, P.S., Anastasio, M.A.: Transport of intensity and spectrum for partially coherent fields. Opt. Lett. 35, 2239–2241 (2010)

    Article  ADS  Google Scholar 

  41. https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=6339

  42. Gupta, A.K., Nishchal, N.K.: Phase characterisation of liquid crystal spatial light modulator. In: 3rd International Conference on Microwave and Photonics (ICMAP), pp. 1–2, Dhanbad (2018)  

Download references

Acknowledgements

Mr. Rouchin Mahendra from IRDE Dehradun, India is acknowledged for providing micro-lens array.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen K. Nishchal.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, A.K., Fatima, A., Nishchal, N.K. et al. Phase imaging based on modified transport of intensity equation using liquid crystal variable retarder with partial coherent illumination. Opt Rev 27, 142–148 (2020). https://doi.org/10.1007/s10043-020-00576-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-020-00576-x

Keywords

Navigation