Skip to main content
Log in

Mode conversion based on dual-phase modulation utilizing interference of two-phase-modulated beams

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

To realize mode conversion with high accuracy and efficiency, we propose a new method based on dual-phase modulation (DPM) that utilizes the interference of two-phase-modulated beams. DPM realizes complex amplitude modulation with the interference of two-phase-modulated beams generated by phase-type spatial light modulators (PSLMs). DPM realizes highly efficient conversion using the interference of light rather than the diffraction that is conventionally used for complex amplitude modulation. Moreover, DPM enables the suppression of modal crosstalk (MXT) utilizing the destructive interference between two unwanted 0th beams that occur from PSLMs. In this paper, we experimentally confirmed that DPM can reduce the amount of the unwanted 0th beam. Then, we performed an experiment on mode conversion based on DPM and achieved a modal crosstalk of less than − 20 dB and an optical loss of less than 10 dB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Richardson, D.J.: Filling the light pipe. Science 330, 327 (2010)

    Article  ADS  Google Scholar 

  2. Essiambre, R.-J., Kramer, G., Winzer, P.J., Foschini, G.J., Goebel, B.: Capacity limits of optical fiber networks. J. Lightwave Technol. 28, 662 (2010)

    Article  ADS  Google Scholar 

  3. Essiambre, R.-J., Tkach, R.W.: Capacity trends and limits of optical communication networks. Proc. IEEE 100, 1035 (2012)

    Article  Google Scholar 

  4. Hand, D.P., Russell, J.S.P: Solitary thermal shock waves and optical damage in optical fibers: the fiber fuse. Opt. Lett. 13, 767 (1988)

    Article  ADS  Google Scholar 

  5. Berdagué, S., Facq, P.: Mode division multiplexing in optical fibers. Appl. Opt. 21, 1950 (1982)

    Article  ADS  Google Scholar 

  6. Richardson, D.J., Fini, J.M., Nelson, L.E.: Space-division multiplexing in optical fibres. Nat. Photon. 7, 354 (2013)

    Article  ADS  Google Scholar 

  7. Sillard, P., Bigot-Astruc, M., Molin, D.: Few-mode fibers for mode-division-multiplexed systems. J. Lightwave Technol. 32, 2824 (2014)

    Article  ADS  Google Scholar 

  8. Ryf, R., Randel, S., Gnauck, A.H., Bolle, C., Sierra, A., Mumtaz, S., Esmaeelpour, M., Burrows, E.C., Essiambre, R.-J., Winzer, P.J., Peckham, D.W., McCurdy, A.H., Lingle, R.: Mode-division multiplexing over 96 km of few-mode fiber using coherent 6 × 6 MIMO processing. J. Lightwave Technol. 30, 521 (2012)

    Article  ADS  Google Scholar 

  9. Igarashi, K., Soma, D., Wakayama, Y., Takeshima, K., Kawaguchi, Y., Yoshikane, N., Tsuritani, T., Morita, I., Suzuki, M.: Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fiber. Opt. Express 24, 10213 (2016)

    Article  ADS  Google Scholar 

  10. Igarashi, K., Soma, D., Tsuritani, T., Morita, I.: Performance evaluation of selective mode conversion based on phase plates for a 10-mode fiber. Opt. Express 22, 20881 (2014)

    Article  ADS  Google Scholar 

  11. Thornburg, W.Q., Corrado, B.J., Zhu, X.D.: Selective launching of higher-order modes into an optical fiber with an optical phase shifter. Opt. Lett. 19, 454 (1994)

    Article  ADS  Google Scholar 

  12. Mohammed, W., Pitchumani, M., Mehta, A., Johnson, E.G.: Selective excitation of the LP11 mode in step index fiber using a phase mask. Opt. Eng. 45, 074602 (2006)

    Article  ADS  Google Scholar 

  13. Dubois, F., Emplit, Ph, Hugon, O.: Selective mode excitation in graded-index multimode fiber by a computer-generated optical mask. Opt. Lett. 19, 433 (1994)

    Article  ADS  Google Scholar 

  14. von Hoyningen-Huene, J., Ryf, R., Winzer, P.: LCoS-based mode shaper for few-mode fiber. Opt. Express 21, 18097 (2013)

    Article  ADS  Google Scholar 

  15. Flamm, D., Schulze, C., Naidoo, D., Schröter, S., Forbes, A., Duparré, M.: All-digital holographic tool for mode excitation and analysis in optical fibers. J. Lightwave Technol. 31, 1023 (2013)

    Article  ADS  Google Scholar 

  16. Shwartz, S., Golub, M.A., Ruschin, S.: Computer-generated holograms for fiber optical communication with spatial-division multiplexing. Appl. Opt. 56, A31 (2017)

    Article  ADS  Google Scholar 

  17. Fontaine, N.K., Ryf, R., Chen, H., Neilson, D.T., Kim, K., Carpenter, J.: Scalable mode sorter supporting 210 Hermite-Gaussian modes. Proceedings of the Optical Fiber Communication Conference Postdeadline Papers, paper Th4B.4 (2018)

  18. Engström, D., Persson, M., Bengtsson, J., Goksör, M.: Calibration of spatial light modulators suffering from spatially varying phase response. Opt. Express 21, 16086 (2013)

    Article  ADS  Google Scholar 

  19. Shibukawa, A., Okamoto, A., Goto, Y., Honma, S., Tomita, A.: Digital phase conjugate mirror by parallel arrangement of two phase-only spatial light modulators. Opt. Express 22, 11918 (2014)

    Article  ADS  Google Scholar 

  20. Xun, X., Cohn, R.W.: Phase calibration of spatially nonuniform spatial light modulators. Appl. Opt. 43, 6400 (2004)

    Article  ADS  Google Scholar 

  21. Reichelt, S.: Spatially resolved phase-response calibration of liquid-crystal-based spatial light modulators. Appl. Opt. 52, 2610 (2013)

    Article  ADS  Google Scholar 

  22. Takeda, M., Ina, H., Kobayashi, S.: Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry. J. Opt. Soc. Am. 72, 156 (1982)

    Article  ADS  Google Scholar 

  23. Paurisse, M., Lévèque, L., Hanna, M., Druon, F., Georges, P.: Complete measurement of fiber modal content by wavefront analysis. Opt. Express 20, 4074 (2012)

    Article  ADS  Google Scholar 

  24. Maeda, T., Okamoto, A., Hirasaki, Y., Shibukawa, A., Tomita, A.: Reconfigurable spatial mode conversion using a phase-type spatial light modulator. Proceedings of the OptoElectronics and communication conference and Australian conference on optical fibre technology, p. 517 (2014)

  25. Shimizu, S., Okamoto, A., Mizukawa, F., Ogawa, K., Tomita, A., Takahata, T., Shinada, S., Wada, N.: Volume holographic spatial mode demultiplexer with a dual-wavelength method. Appl. Opt. 57, 146 (2018)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Maeda.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maeda, T., Okamoto, A., Ogawa, K. et al. Mode conversion based on dual-phase modulation utilizing interference of two-phase-modulated beams. Opt Rev 25, 734–742 (2018). https://doi.org/10.1007/s10043-018-0470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-018-0470-z

Keywords

Navigation