Skip to main content
Log in

Photonic phase shifter with full tunable range and multi-band frequency-conversion feature based on a PDM-DPMZM

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, a novel photonic phase shifter with − 180° to 180° phase-tunable range and multi-band frequency-conversion feature is proposed. The main device is a single polarization division multiplexing dual-parallel Mach–Zehnder modulator (PDM-DPMZM). The PDM-DPMZM is employed to generate an optical frequency comb (OFC) and a carrier-suppressed single sideband (CS-SSB) in two mutually orthogonal polarizations. Simultaneously, an electrical phase shifter is adopted to control the initial phase of the CS-SSB. The simulation results show, a RF signal with the frequency of 4.3 GHz (C-band) can be down-converted to 1.4 GHz (L-band). Meanwhile, it can also be up-converted to 5.7 GHz (C-band), 10 GHz (LO signal), 14.3 GHz (Ku-band) and 18.6 GHz (K-band) with their phases continuously tuned from − 180° to 180°. Furthermore, the proposed structure features flat power response, frequency-independent operation, simple configuration, easy phase tuning, better ability to cope with DC drift and wide operation bandwidth. The unwanted signal suppression ratio (USSR) and the spurious free dynamic range (SFDR) of the phase shifter are also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Winnall, S.T., Lindsay, A.C., et al.: A wide-band microwave photonic phase and frequency shifter. IEEE Trans. Microw Theory Tech. 45(6), 1003–1006 (1997)

    Article  ADS  Google Scholar 

  2. Yao, J.: Microwave photonics. J. Lightwave Technol. 27(3), 314–335 (2009)

    Article  ADS  Google Scholar 

  3. Capmany, J., Novak, D.: Microwave photonics combines two worlds. Nat Photonics 1(6), 319–330 (2007)

    Article  ADS  Google Scholar 

  4. Pan, S., Zhu, D., et al.: Microwave photonics for modern radar systems. Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014)

    MathSciNet  Google Scholar 

  5. Zhang, K., Zhao, S., et al.: Photonic generation and transmission of linearly chirped microwave waveform with increased time-bandwidth product. IEEE ACCESS. 7, 47461–47471 (2019)

    Article  Google Scholar 

  6. Zhang, K., Zhao, S., et al.: Anti-chromatic dispersion transmission of frequency and bandwidth-doubling dual-chirp microwave waveform. Opt. Lett. 44(16), 4004–4007 (2019)

    Article  ADS  Google Scholar 

  7. Xue, W., Sales, S., et al.: Wideband 360 degrees microwave photonic phase shifter based on slow light in semiconductor optical amplifiers. Opt. Exp. 18(6), 6156–6163 (2010)

    Article  ADS  Google Scholar 

  8. Sun, X., Fu, S., et al.: Photonic RF phase shifter based on a vector-sum technique using stimulated brillouin scattering in dispersion shifted fiber. IEEE Trans. Microw Theory Tech. 58(11), 3206–3212 (2010)

    Article  ADS  Google Scholar 

  9. Yang, J., Chan, E.H.W., et al.: Broadband photonic microwave phase shifter based on controlling two RF modulation sidebands via a Fourier-domain optical processor. Opt. Exp. 23(9), 1210012110 (2015)

    Article  ADS  Google Scholar 

  10. Li, Z., Yu, C., et al.: Linear photonic radio frequency phase shifter using a differential-group-delay element and an optical phase modulator. Opt. Lett. 35(11), 1881–1883 (2010)

    Article  ADS  Google Scholar 

  11. Chen, H., Dong, Y., et al.: Photonic radio-frequency phase shifter based on polarization interference. Opt. Lett. 34(15), 2375–2377 (2009)

    Article  ADS  Google Scholar 

  12. Chan, E.H.W., Zhang, W., et al.: Photonic RF phase shifter based on optical carrier and RF modulation sidebands amplitude and phase control. IEEE J. Lightwave Technol. 30(23), 3672–3678 (2012)

    Article  ADS  Google Scholar 

  13. Pan, S., Zhang, Y.: Tunable and wideband microwave photonic phase shifter based on a single-sideband polarization modulator and a polarizer. Opt. Lett. 37(21), 4483–4485 (2012)

    Article  ADS  Google Scholar 

  14. Li, W., Sun, W.H., et al.: Photonic-assisted microwave phase shifter using a DMZM and an optical bandpass filter. Opt. Exp. 22(5), 5522–5527 (2014)

    Article  ADS  Google Scholar 

  15. Peng, Z., Wen, A., et al.: A tunable and wideband microwave photonic phase shifter based on dual-polarization modulator. Opt. Commun. 382, 377–380 (2017)

    Article  ADS  Google Scholar 

  16. Chen, Y.: A wideband photonic microwave phase shifter with 360-degree phase tunable range based on a DP-QPSK modulator. Opt Commun 410, 787–792 (2018)

    Article  ADS  Google Scholar 

  17. Zhang, Y., Pan, S.: Frequency-multiplying microwave photonic phase shifter for independent multichannel phase shifting. Opt. Lett. 41(6), 1261 (2016)

    Article  ADS  Google Scholar 

  18. Zhang, W., Yao, J.: Photonic generation of millimeter-wave signals with tunable phase shift. IEEE Photon. J. 4(3), 889–894 (2012)

    Article  ADS  Google Scholar 

  19. Feng, Z., Fu, S., et al.: Multichannel continuously tunable microwave phase shifter with capability of frequency doubling. IEEE Photon. J. 6(1), 1–8 (2014)

    Article  MathSciNet  Google Scholar 

  20. Wang, Q., Huo, L., et al.: Ultra-flat optical frequency comb generator using a single-driven dual-parallel Mach-Zehnder modulator. Opt. Lett. 39(10), 3050 (2014)

    Article  ADS  Google Scholar 

  21. Zhang, Y., Ye, X., et al.: Photonic generation of linear frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation. IEEE J. Lightw. Technol. 99, 1–1 (2017)

    Google Scholar 

  22. Chow, C.W., Wang, C.H., et al.: Analysis of the carrier-suppressed single-sideband modulators used to mitigate Rayleigh backscattering in carrier-distributed PON. Opt. Exp. 19(11), 10937 (2011)

    Article  Google Scholar 

  23. Coward, J.F., Chalfant, C.H., et al.: A photonic integrated-optic RF phase shifter for phased array antenna beam-forming applications. IEEE J. Lightw. Technol. 11(12), 2201–2205 (1993)

    Article  ADS  Google Scholar 

  24. ET Industries.: Stripline 90 degree hybrid coupler Q-467-90 datasheet [Online]. https://www.etiworld.com. Accessed 2018.

  25. Cole, M.W., Toonen, R.C., et al.: Ba060sr040tio3 thin films for microwave phase shifter devices: the influence of crystallization temperature on the electric field dependent phase shift response. Integrated Ferroelectrics 111(1), 68–79 (2009)

    Article  Google Scholar 

  26. Oliveira, J. C. R. F. D., Freitas, A. P., et al.: The first Brazilian integrated 100G DPQPSK transmitter on a 4x3 mm silicon photonic chip. In: SPIE Proceedings, vol. 9010 (2014)

  27. Marpaung, D., Roeloffzen, C., et al.: Integrated microwave photonics. Laser Photon Rev. 7(4), 506–538 (2013)

    Article  ADS  Google Scholar 

  28. Zhang, Y., Pan, S.: Broadband microwave signal processing enabled by polarization-based photonic microwave phase shifters. IEEE J. Quantum. Elect. 54(4), 1–13 (2018).

    Article  ADS  Google Scholar 

  29. Rong, H., Jones, R., et al.: A continuous-wave Raman silicon laser. Nature 433(7027), 725–728 (2005)

    Article  ADS  Google Scholar 

  30. Dong, P., Xie, C., et al.: 112-Gb/s monolithic PDM-QPSK modulator in silicon. Opt. Exp. 20(26), B624 (2012)

    Article  Google Scholar 

  31. Sacher, W.D., Barwicz, T., et al.: Polarization rotator-splitters in standard active silicon photonics platforms. Opt. Exp. 22(4), 3777 (2014)

    Article  ADS  Google Scholar 

  32. Miao, A., Huang, Y., et al.: Wideband calibration of photodetector frequency response based on optical heterodyne measurement. Microw Opt. Technol. Lett. 51(1), 44–48 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (no. 61571461) (no. 61401502) and (no. 61231012), Natural Science Foundation of Shan Xi Province (no. 2016JQ6008), Project of Science and Technology New Star of Shan Xi Province (no. 2019KJXX-082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanghong Zhao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Zhao, S., Lin, T. et al. Photonic phase shifter with full tunable range and multi-band frequency-conversion feature based on a PDM-DPMZM. Opt Rev 26, 681–692 (2019). https://doi.org/10.1007/s10043-019-00553-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-019-00553-z

Navigation