Skip to main content
Log in

A horn ridge waveguide DFB laser with reduced spatial hole burning for high-speed modulation

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, we propose a DFB laser with a horn ridge waveguide (HRW) to suppress the longitudinal spatial hole burning (LSHB) effect in the lasers cavity, thus to reduce the rolloff at low frequency. The simulation result shows that HRW DFB lasers could significantly suppress the LSHB effect and its modulation bandwidth is increased by 14% comparing with the conventional straight ridge waveguide (RW) DFB lasers when the normalized coupling coefficient (κL) is 3.0. The calculated eye diagrams of HRW DFB lasers under direct 25 Gbps modulation have clearer opening than that of the conventional RW DFB lasers. These superior properties are due to the suppression of the LSHB effect by the HRW structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B.: “112-Gb/s WDM link using two directly modulated Al-MQW BH DFB lasers at 56 Gb/s,” in Optical Fiber Communication Conference, Los Angeles, California (2015)

  2. Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3- m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photon. Technol. Lett. 27(5), 534–536 (2015)

    Article  ADS  Google Scholar 

  3. Streifer, W., Scifres, D.R., Burnham, R.D.: Periodic corrugated dielectric waveguides. Fiber Integr. Opt. 1(1), 63–75 (1977)

    Article  ADS  Google Scholar 

  4. Morthier, G., Baets, R.: Design of index-coupled DEB lasers with reduced longitudinal spatial hole burning. J. Lightwave Technol. 9(10), 1305–1313 (1991)

    Article  ADS  Google Scholar 

  5. Guo, R., Zheng, J., Zhang, Y., Shi, Y., Li, L., Qiu, B., Lu, L., Chen, X.: Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers. Sci. Bull. 60(11), 1–7 (2015)

    Article  Google Scholar 

  6. Nakahara, K., Wakayama, Y., Kitatani, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: 1.3 μm InGaAlAs asymmetric corrugationpitch-modulated DFB lasers with high mask margin at 28 Gbit/s. Electron. Lett. 50(13), 947–948 (2014)

    Article  Google Scholar 

  7. Morthier, G., David, K., Vankwikelberge, P., Baets, R.: A new DFB-laser diode with reduced spatial hole burning. IEEE Photon. Technol. Lett. 2(6), 388–390 (1990)

    Article  ADS  Google Scholar 

  8. Tadokoro, T., Kobayashi, W., Fujisawa, T., Yamanaka, T., Kano, F.: 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J. Lightwave Technol. 30(15), 2520–2524 (2012)

    Article  ADS  Google Scholar 

  9. Williams, K.A., Penty, R.V., White, I.H., Robbins, D.J., Wilson, F.J., Lewandowski, J.J., Nayar, B.K.: Design of high-brightness tapered laser arrays. IEEE J. Sel. Top. Quantum Electron. 5(3), 822–831 (1999)

    Article  Google Scholar 

  10. Wilson, F.J., Lewandowski, J.J., Nayar, B.K., Robbins, D.J., Williams, P.J., Carr, N., Robson, F.O.: 9.5 W CW output power from high brightness 980 nm InGaAs/AlGaAs tapered laser arrays. Electron. Letters. 35(1), 43–45 (1999)

    Article  Google Scholar 

  11. Yeo, C.I., Jang, S.J., Yu, J.S., Lee, Y.T.: 1.3-μm laterally tapered ridge waveguide DFB lasers with second-order Cr surface gratings. IEEE Photon. Technol. Lett. 22(22), 1668–1670 (2010)

    Google Scholar 

  12. Yu, S.F.: Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation. IEEE J. Quantum Electron. 33(1), 71–80 (1997)

    Article  ADS  Google Scholar 

  13. Ke, C., Li, X., Xi, Y.: A horn ridge waveguide DFB laser for high single longitudinal mode yield. J. Lightwave Technol. 33(24), 5032–5037 (2015)

    Article  ADS  Google Scholar 

  14. Li, X.: Optoelectronic devices: Design, Modeling, and Simulation. Cambridge University Press, New York (2009)

    Book  Google Scholar 

  15. Zhang, L.M., Carroll, J.E.: Large-signal dynamic model of the DFB laser. IEEE J. Quantum Electron. 28(3), 604–611 (1992)

    Article  ADS  Google Scholar 

  16. Lusse, P., Stuwe, P., Schule, J., Unger, H.G.: Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. 12(3), 487–494 (1994)

    Article  ADS  Google Scholar 

  17. Chuang, S.L.: Physics of Photonic Devices, 2nd ed. Wiley, New Jersey (2012)

    Google Scholar 

  18. Hirayama, H., Yoshida, J., Miyake, Y., Asada, M.: Carrier capture time and its effect on the efficiency of quantum-well lasers. IEEE J. Quantum Electron. 30(1), 54–62 (1994)

    Article  ADS  Google Scholar 

  19. Nagarajan, R., Ishikawa, M., Fukushima, T., Geels, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28(10), 1990–2008 (1992)

    Article  ADS  Google Scholar 

  20. David, K., Morthier, G., Vankwikelberge, P., Baets, R.G., Wolf, T., Borchert, B.: Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield. IEEE J. Quantum Electron. 27(6), 1714–1723 (1991)

    Article  ADS  Google Scholar 

  21. Kinoshita, J.-I., Matsumoto, K.: Yield analysis of SLM DFB lasers with an axially-flattened internal field. IEEE J. Quantum Electron. 25(6), 1324–1332 (1989)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Ke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ke, C., Wang, C., Fu, J. et al. A horn ridge waveguide DFB laser with reduced spatial hole burning for high-speed modulation. Opt Rev 24, 345–350 (2017). https://doi.org/10.1007/s10043-017-0326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-017-0326-y

Keywords

Navigation