Optical Review

, Volume 24, Issue 3, pp 345–350 | Cite as

A horn ridge waveguide DFB laser with reduced spatial hole burning for high-speed modulation

  • Cheng Ke
  • Chuping Wang
  • Junwei Fu
  • Yulan Zhou
  • Chunsheng Li
Regular Paper


In this paper, we propose a DFB laser with a horn ridge waveguide (HRW) to suppress the longitudinal spatial hole burning (LSHB) effect in the lasers cavity, thus to reduce the rolloff at low frequency. The simulation result shows that HRW DFB lasers could significantly suppress the LSHB effect and its modulation bandwidth is increased by 14% comparing with the conventional straight ridge waveguide (RW) DFB lasers when the normalized coupling coefficient (κL) is 3.0. The calculated eye diagrams of HRW DFB lasers under direct 25 Gbps modulation have clearer opening than that of the conventional RW DFB lasers. These superior properties are due to the suppression of the LSHB effect by the HRW structure.


Semiconductor lasers Distributed feedback lasers Direct modulated laser 


  1. 1.
    Matsui, Y., Pham, T., Sudo, T., Carey, G., Young, B.: “112-Gb/s WDM link using two directly modulated Al-MQW BH DFB lasers at 56 Gb/s,” in Optical Fiber Communication Conference, Los Angeles, California (2015)Google Scholar
  2. 2.
    Nakahara, K., Wakayama, Y., Kitatani, T., Taniguchi, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: Direct modulation at 56 and 50 Gb/s of 1.3- m InGaAlAs ridge-shaped-BH DFB lasers. IEEE Photon. Technol. Lett. 27(5), 534–536 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    Streifer, W., Scifres, D.R., Burnham, R.D.: Periodic corrugated dielectric waveguides. Fiber Integr. Opt. 1(1), 63–75 (1977)ADSCrossRefGoogle Scholar
  4. 4.
    Morthier, G., Baets, R.: Design of index-coupled DEB lasers with reduced longitudinal spatial hole burning. J. Lightwave Technol. 9(10), 1305–1313 (1991)ADSCrossRefGoogle Scholar
  5. 5.
    Guo, R., Zheng, J., Zhang, Y., Shi, Y., Li, L., Qiu, B., Lu, L., Chen, X.: Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers. Sci. Bull. 60(11), 1–7 (2015)CrossRefGoogle Scholar
  6. 6.
    Nakahara, K., Wakayama, Y., Kitatani, T., Fukamachi, T., Sakuma, Y., Tanaka, S.: 1.3 μm InGaAlAs asymmetric corrugationpitch-modulated DFB lasers with high mask margin at 28 Gbit/s. Electron. Lett. 50(13), 947–948 (2014)CrossRefGoogle Scholar
  7. 7.
    Morthier, G., David, K., Vankwikelberge, P., Baets, R.: A new DFB-laser diode with reduced spatial hole burning. IEEE Photon. Technol. Lett. 2(6), 388–390 (1990)ADSCrossRefGoogle Scholar
  8. 8.
    Tadokoro, T., Kobayashi, W., Fujisawa, T., Yamanaka, T., Kano, F.: 43 Gb/s 1.3 μm DFB laser for 40 km transmission. J. Lightwave Technol. 30(15), 2520–2524 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    Williams, K.A., Penty, R.V., White, I.H., Robbins, D.J., Wilson, F.J., Lewandowski, J.J., Nayar, B.K.: Design of high-brightness tapered laser arrays. IEEE J. Sel. Top. Quantum Electron. 5(3), 822–831 (1999)CrossRefGoogle Scholar
  10. 10.
    Wilson, F.J., Lewandowski, J.J., Nayar, B.K., Robbins, D.J., Williams, P.J., Carr, N., Robson, F.O.: 9.5 W CW output power from high brightness 980 nm InGaAs/AlGaAs tapered laser arrays. Electron. Letters. 35(1), 43–45 (1999)CrossRefGoogle Scholar
  11. 11.
    Yeo, C.I., Jang, S.J., Yu, J.S., Lee, Y.T.: 1.3-μm laterally tapered ridge waveguide DFB lasers with second-order Cr surface gratings. IEEE Photon. Technol. Lett. 22(22), 1668–1670 (2010)Google Scholar
  12. 12.
    Yu, S.F.: Double-tapered-waveguide distributed feedback lasers for high-power single-mode operation. IEEE J. Quantum Electron. 33(1), 71–80 (1997)ADSCrossRefGoogle Scholar
  13. 13.
    Ke, C., Li, X., Xi, Y.: A horn ridge waveguide DFB laser for high single longitudinal mode yield. J. Lightwave Technol. 33(24), 5032–5037 (2015)ADSCrossRefGoogle Scholar
  14. 14.
    Li, X.: Optoelectronic devices: Design, Modeling, and Simulation. Cambridge University Press, New York (2009)CrossRefGoogle Scholar
  15. 15.
    Zhang, L.M., Carroll, J.E.: Large-signal dynamic model of the DFB laser. IEEE J. Quantum Electron. 28(3), 604–611 (1992)ADSCrossRefGoogle Scholar
  16. 16.
    Lusse, P., Stuwe, P., Schule, J., Unger, H.G.: Analysis of vectorial mode fields in optical waveguides by a new finite difference method. J. Lightwave Technol. 12(3), 487–494 (1994)ADSCrossRefGoogle Scholar
  17. 17.
    Chuang, S.L.: Physics of Photonic Devices, 2nd ed. Wiley, New Jersey (2012)Google Scholar
  18. 18.
    Hirayama, H., Yoshida, J., Miyake, Y., Asada, M.: Carrier capture time and its effect on the efficiency of quantum-well lasers. IEEE J. Quantum Electron. 30(1), 54–62 (1994)ADSCrossRefGoogle Scholar
  19. 19.
    Nagarajan, R., Ishikawa, M., Fukushima, T., Geels, R.S., Bowers, J.E.: High speed quantum-well lasers and carrier transport effects. IEEE J. Quantum Electron. 28(10), 1990–2008 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    David, K., Morthier, G., Vankwikelberge, P., Baets, R.G., Wolf, T., Borchert, B.: Gain-coupled DFB lasers versus index-coupled and phase shifted DFB lasers: a comparison based on spatial hole burning corrected yield. IEEE J. Quantum Electron. 27(6), 1714–1723 (1991)ADSCrossRefGoogle Scholar
  21. 21.
    Kinoshita, J.-I., Matsumoto, K.: Yield analysis of SLM DFB lasers with an axially-flattened internal field. IEEE J. Quantum Electron. 25(6), 1324–1332 (1989)ADSCrossRefGoogle Scholar

Copyright information

© The Optical Society of Japan 2017

Authors and Affiliations

  1. 1.Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  2. 2.The School of Engineering Sciences, Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations