Skip to main content
Log in

Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers

周期调制DFB半导体激光器的双辅助相移对空间烧孔效应的抑制作用

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

An equivalent corrugation pitch-modulated (ECPM) distributed feedback (DFB) semiconductor laser with two equivalently assisted phase shifts (EAPS) was theoretically studied and experimentally demonstrated. The simulated results showed that the longitudinal photon density distribution of the ECPM + EAPS DFB lasers was much more uniform than that of a sole ECPM DFB laser without EAPS, and the longitudinal spatial hole burning was therefore suppressed more effectively. The results of experiment showed that good single longitudinal mode operation was achieved, with side mode suppression ratio (SMSR) being over 35 dB, and the wavelength range was from 1,559.64 to 1,563.02 nm when the operation current was from 50 to 160 mA at the temperature of 25 °C, and the SMSR increased to 46.29 dB when the injection current was 130 mA.

摘要

由于分布反馈式(DFB)半导体激光器具有结构简单、频谱稳定等优点,在光通信领域具有十分广泛的应用。传统的DFB激光器在大电流条件下容易产生空间烧孔效应,从而造成单模特性不稳定。为了抑制空间烧孔效应,本文基于重构等效啁啾技术设计了具有双辅助相移的周期调制光栅结构,并从理论和实验两个方面进行了研究,理论仿真和实验结果吻合。另外仿真计算了激光器谐振腔中光场分布的平坦因子,利用双辅助相移周期调制光栅结构的DFB激光器,其腔内光场分布平坦程度得到明显提高。实验结果表明:温度25 °C,注入电流50-160 mA时,激光器边模抑制比均超过35 dB,单模特性保持稳定。因此,本文论述的DFB激光器对空间烧孔效应具有明显抑制作用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chen M, He J, Chen L (2014) Real-time optical OFDM long-reach PON system over 100 km SSMF using a directly modulated DFB laser. J Opt Commun Netw 6:18–25

    Article  Google Scholar 

  2. Wang LX, Zhu NH, Liu JG et al (2012) Experimental optimization of phase noise performance of optoelectronic oscillator based on directly modulated laser. Chin Sci Bull 57:4087–4090

    Article  Google Scholar 

  3. Wei JL, Sanchez C, Hugues-Salas E et al (2011) Wavelength-offset filtering in optical OFDM IMDD systems using directly modulated DFB lasers. J Lightwave Technol 29:2861–2870

    Article  Google Scholar 

  4. Du HC, Luo LY, Wang XS et al (2013) Isolated attosecond pulse generation combining propagation effects and a modulated chirped polarization gating technique. Sci China Phys Mech Astron 56:888–895

    Article  Google Scholar 

  5. Yang PQ, Hippler S, Zhu JQ (2014) Optimization of the transmitted wavefront for the infrared adaptive optics system. Sci China Phys Mech Astron 57:608–614

    Article  Google Scholar 

  6. Li Q, Yan FP, Peng WJ et al (2012) DFB laser based on single mode large effective area heavy concentration EDF. Opt Express 20:23684–23689

    Article  Google Scholar 

  7. Shi JX, Qin L, Liu Y et al (2012) Emission characteristics of surface second-order metal grating distributed feedback semiconductor lasers. Chin Sci Bull 57:2083–2086

    Article  Google Scholar 

  8. Kwon OK, Leem YA, Dong HL et al (2011) Effects of asymmetric grating structures on output efficiency and single longitudinal mode operation in λ/4-shifted DFB laser. IEEE J Quantum Electron 47:1185–1194

    Article  Google Scholar 

  9. Wang H, Zhu HL, Chen XF et al (2009) Control of the lasing wavelength by a sampled grating in a complex-coupled DFB laser. Semicond Sci Technol 24:015004

    Article  Google Scholar 

  10. Li SX, Yu G, Zhang JC et al (2013) Single-row laser beam with energy strengthened ends for continuous scanning laser surface hardening of large metal components. Sci China Phys Mech Astron 56:1074–1078

    Article  Google Scholar 

  11. Pascal C (1994) Stability of phase-shifted DFB lasers against hole burning. IEEE J Quantum Electron 30:2467–2476

    Article  Google Scholar 

  12. Okai M, Chinone N, Taira H et al (1989) Corrugation-pitch-modulated phase-shifted DFB laser. IEEE Photonics Technol Lett 1:200–201

    Article  Google Scholar 

  13. Li SM, Guo RJ, Li LY et al (2014) Experimental demonstration of DFB semiconductor lasers with varying longitudinal parameters. Opt Express 22:4059–4064

    Article  Google Scholar 

  14. Shi YC, Li SM, Chen XF et al (2014) High channel count and high precision channel spacing multi-wavelength laser array for future PICs. Sci Rep 4:7377

    Article  Google Scholar 

  15. Li SM, Li RM, Li LY et al (2013) Dual wavelength semiconductor laser based on reconstruction-equivalent-chirp technique. IEEE Photonics Technol Lett 25:299–302

    Article  Google Scholar 

  16. Lu LL, Cao BL, Zhang LB et al (2014) Experimental demonstration of the three-phase-shifted DFB semiconductor laser with buried heterostructure using common holographic exposure. Sci China Technol Sci 57:2231–2235

    Article  Google Scholar 

  17. Chen XF, Liu W, An JM et al (2011) Photonic integrated technology for multi-wavelength laser emission. Chin Sci Bull 56:3064–3071

    Article  Google Scholar 

  18. Wang JS, Liu Y, Chen XF et al (2014) Compact packaging for multi-wavelength DML TOSA. Chin Sci Bull 59:2387–2390

    Article  Google Scholar 

  19. Shi YC, Tu XH, Li SM et al (2010) Numerical study of three phase shifts and dual corrugation pitch modulated (CPM) DFB semiconductor lasers based on reconstruction equivalent chirp technology. Chin Sci Bull 55:4083–4088

    Article  Google Scholar 

  20. Shi YC, Liu R, Liu SC et al (2014) A low-cost and high-wavelength-precision fabrication method for multi-wavelength DFB semiconductor laser array. IEEE Photonics J 6:2400112

    Google Scholar 

  21. Dai YT, Yao JP (2008) Numerical study of a DFB semiconductor laser and laser array with chirped structure based on the equivalent chirp technology. IEEE J Quantum Electron 44:938–945

    Article  Google Scholar 

  22. Toshihiko M, Jan G (1988) Transfer matrix analysis of the amplified spontaneous emission of DFB semiconductor laser amplifiers. IEEE J Quantum Electron 24:1507–1518

    Article  Google Scholar 

  23. Zuo Q, Zhao JY, Wang ZH et al (2013) High performance asymmetric three corrugation-pitch-modulated DFB lasers suitable for stable single longitudinal mode operation. Opt Photonics J 3:57–60

    Article  Google Scholar 

  24. Fernandes CF (1998) Transfer matrix modelling in DFB lasers. Microelectron Eng 43-44:553–560

    Article  Google Scholar 

  25. Champagne Y, Mccarthy N (1992) Analysis of the stability of multiple-phase-shift distributed-feedback semiconductor lasers. Can J Phys 71:29–38

    Article  Google Scholar 

  26. Mohammad SN (2005) Axial distribution of coupling coefficient of distributed feedback laser diode. Opt Laser Technol 39:290–293

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61306068 and 61435014), the Natural Science Foundation of Jiangsu Province of China (BK20130585 and BK20140414), the National High Technology Research and Development Program (SS2015AA012302) and the Applied Basic Research Project of Suzhou City (SYG201309).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunshan Zhang.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Zheng, J., Zhang, Y. et al. Suppressing longitudinal spatial hole burning with dual assisted phase shifts in pitch-modulated DFB lasers. Sci. Bull. 60, 1026–1032 (2015). https://doi.org/10.1007/s11434-015-0807-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0807-y

Keywords

Navigation