Skip to main content
Log in

Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We derived the absorption coefficient (μ a) and the reduced scattering coefficient (μ s′) using the edge-loss method (ELM) and the video reflectometry method (VRM), and compared the results. In a previous study, we developed the ELM to easily evaluate the lateral spread in the skin; the VRM is a conventional method. The ELM measures the translucency index, which is correlated with μ a and μ s′. To obtain a precise estimation of these parameters, we improved the treatment of a white standard and the surface reflection. For both skin phantoms and actual skin, the values for μ a and μ s′ that we obtained using the ELM were similar to those obtained using the VRM, when μ a/μ s′ was less than or equal to 0.05 and the diffusion approximation was applicable. Under this condition, the spectral reflectivity is greater than 0.4. In this study, we considered wavelengths longer than 600 nm for Types III and IV of the Fitzpatrick scale. For skin, the repeatability errors of the parameters obtained with the ELM were smaller than those obtained with the VRM; this can be an advantage in field tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jacques, S.L., Gutsche, A., Schwartz, J., Wang, L., Tittel, F.: Video reflectometry to specify optical properties of tissue in vivo. In: Mueller, G.J., Chance, B., Alfano, R.R., Arridge, S.R., Beuthan, J., Gratton, E., Kaschke, M.F., Masters, B.R., Svanberg, S., van der Zee, P. (eds.) Medical Optical Tomography: Functional Imaging and Monitoring, IS11 of SPIE Institute Series. pp. 211–226. SPIE Optical Engineering Press, Bellingham (1993)

  2. Jensen, H.W., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: SIGGRAPH’01 Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques. pp. 511–518. ACM Press, New York, NY, USA (2001)

  3. Cheong, W.F., Prahl, S.A., Welch, A.J.: A review of the optical properties of biological tissues. IEEE J. Quantum Electron. 26, 2166–2185 (1990)

    Article  ADS  Google Scholar 

  4. Farrell, T.J.: A diffusion theory model of spatially resolved, steady-state diffuse reflectance for the noninvasive determination of tissue optical properties in vivo. Med. Phys. 19, 879–888 (1992)

    Article  Google Scholar 

  5. Wang, L., Jacques, S.L.: Use of a laser beam with an oblique angle of incidence to measure the reduced scattering coefficient of a turbid medium. Appl. Opt. 34, 2362–2366 (1995)

    Article  ADS  Google Scholar 

  6. Nickell, S., Hermann, M., Essenpreis, M., Farrell, T.J., Krämer, U., Patterson, M.S.: Anisotropy of light propagation in human skin. Phys. Med. Biol. 45, 2873–2886 (2000)

    Article  Google Scholar 

  7. Jiang, Z., Kaplan, P.D.: Point-spread imaging for measurement of skin translucency and scattering. Skin Res. Technol. 14, 293–297 (2008)

    Article  ADS  Google Scholar 

  8. Sun, P., Cao, X., Yang, R., Xie, F., Ding, J., Zhang, F.: Basic research on determining optical properties of tissues in vivo by measuring diffuse reflectance with a charge-coupled device. Opt. Appl. 41, 541–555 (2011)

    Google Scholar 

  9. Chan, E.K., Sorg, B., Protsenko, D., O’Neil, M., Motamedi, M., Welch, A.J.: Effects of compression on soft tissue optical properties. IEEE J. Sel. Top. Quantum Electron. 2, 943–950 (1996)

    Article  Google Scholar 

  10. Bashkatov, A.N., Genina, E.A., Kochubey, V.I., Tuchin, V.V.: Optical properties of human skin, subcutaneous and mucous tissues in the wavelength range from 400 to 2000 nm. J. Phys. D Appl. Phys. 38, 2543–2555 (2005)

    Article  ADS  Google Scholar 

  11. Nakai, T., Nishimura, G., Yamamoto, K., Tamura, M.: Expression of optical diffusion coefficient in high-absorption turbid media. Phys. Med. Biol. 42, 2541–2549 (1997)

    Article  Google Scholar 

  12. Komeda, N., Ojima, N., Okuzumi, K., Okada, J., Fukuda, K., Hori, K.: Analysis of skin appearance based internal scattering of light. In: 18th IFSCC International Conference Proceedings. pp. 201–207. IFSCC, Florence, Italy (2005)

  13. Matsubara, A.: Skin translucency: what is it and how is it measured? In: 24th IFSCC Congress Abstracts (Oral Session). pp. 92–93. IFSCC, Osaka, Japan (2006)

  14. Kim, H.J., Baek, J.H., Eo, J.E., Choi, K.M., Shin, M.K., Koh, J.S.: Dermal matrix affects translucency of incident light on the skin. Skin Res. Technol. 21, 41–46 (2015)

    Article  Google Scholar 

  15. Weyrich, T., Jensen, H.W., Gross, M., Matusik, W., Pfister, H., Bickel, B., Donner, C., Tu, C., McAndless, J., Lee, J., Ngan, A.: Analysis of human faces using a measurement-based skin reflectance model. ACM Trans. Graph. 25, 1013–1024 (2006)

    Article  Google Scholar 

  16. Iglesias-Guitian, J.A., Aliaga, C., Jarabo, A., Gutierrez, D.: A biophysically-based model of the optical properties of skin aging. Comput. Graph. Forum. 34, 45–55 (2015)

    Article  Google Scholar 

  17. Yoshida, K., Komeda, N., Ojima, N., Iwata, K.: Simple and effective method for measuring translucency using edge loss: optimization of measurement conditions and applications for skin. J. Biomed. Opt. 16, 117003 (2011)

    Article  ADS  Google Scholar 

  18. Rugh, E.H., Johnston, W.M., Hesse, N.S.: The relationship between elastomer opacity, colorimeter beam size, and measured colorimetric response. Int. J. Prosthodont. 4, 569–576 (1991)

    Google Scholar 

  19. Lee, Y.-K., Lu, H., Powers, J.M.: Measurement of opalescence of resin composites. Dent. Mater. 21, 1068–1074 (2005)

    Article  Google Scholar 

  20. Takiwaki, H., Miyaoka, Y., Skrebova, N., Kohno, H., Arase, S.: Skin reflectance-spectra and colour-value dependency on measuring-head aperture area in ordinary reflectance spectrophotometry and tristimulus colourimetry. Skin Res. Technol. 8, 94–97 (2002)

    Article  Google Scholar 

  21. Georgakoudi, I., Jacobson, B.C., Müller, M.G., Sheets, E.E., Badizadegan, K., Carr-Locke, D.L., Crum, C.P., Boone, C.W., Dasari, R.R., Van Dam, J., Feld, M.S.: NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 62, 682–687 (2002)

    Google Scholar 

  22. Gallas, J.M., Eisner, M.: Fluorescense of melanin-dependence upon excitation wavelength and concentration. Photochem. Photobiol. 45, 595–600 (1987)

    Article  Google Scholar 

  23. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124, 869–871 (1988)

    Article  Google Scholar 

  24. Ding, H., Lu, J.Q., Jacobs, K.M., Hu, X.-H.: Determination of refractive indices of porcine skin tissues and intralipid at eight wavelengths between 325 and 1557 nm. J. Opt. Soc. Am. A 22, 1151–1157 (2005)

    Article  ADS  Google Scholar 

  25. Bashkatov, A.N., Genina, E.A., Tuchin, V.V.: Optical properties of skin, subcutaneous, and muscle tissues: a review. J. Innov. Opt. Health Sci. 4, 9–38 (2011)

    Article  Google Scholar 

  26. Yoshida, K., Miyaki, M., Ojima, N., Iwata, K.: Relationship between microstructure of the skin surface and surface reflection based on geometric optics. J. Dermatol. Sci. 66, 225–232 (2012)

    Article  Google Scholar 

  27. Igarashi, T., Nishino, K., Nayar, S.K.: The appearance of human skin: a survey. Found. Trends. Comput. Graph. Vis. 3(1), 1–95 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichiro Yoshida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoshida, K. Derivation of absorption coefficient and reduced scattering coefficient with edge-loss method and comparison with video reflectometry method. Opt Rev 23, 579–586 (2016). https://doi.org/10.1007/s10043-016-0237-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0237-3

Keywords

Navigation