Skip to main content
Log in

Adaptive registration of diffusion tensor images on lie groups

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

With diffusion tensor imaging (DTI), more exquisite information on tissue microstructure is provided for medical image processing. In this paper, we present a locally adaptive topology preserving method for DTI registration on Lie groups. The method aims to obtain more plausible diffeomorphisms for spatial transformations via accurate approximation for the local tangent space on the Lie group manifold. In order to capture an exact geometric structure of the Lie group, the local linear approximation is efficiently optimized by using the adaptive selection of the local neighborhood sizes on the given set of data points. Furthermore, numerical comparative experiments are conducted on both synthetic data and real DTI data to demonstrate that the proposed method yields a higher degree of topology preservation on a dense deformation tensor field while improving the registration accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pierpaoli, C., Jezzard, P., Basser, P.J., Barnett, A., Di Chiro, G.: Diffusion tensor mr imaging of the human brain. Radiology 201(3), 637–648 (1996)

    Article  Google Scholar 

  2. Alexander, D.C., Gee, J.C.: Elastic matching of diffusion tensor images. Comput. Vis. Image Underst. 77(2), 233–250 (2000)

    Article  Google Scholar 

  3. Zhang, H., Yushkevich, P.A., Alexander, D.C., Gee, J.C.: Deformable registration of diffusion tensor mr images with explicit orientation optimization. Med. Image Anal. 10(5), 764–785 (2006)

    Article  Google Scholar 

  4. Guimond, A., Guttmann, C.R., Warfield, S.K., Westin, C.-F.: Deformable registration of dt-mri data based on transformation invariant tensor characteristics. In: Biomedical Imaging, 2002. Proceedings. 2002 IEEE International Symposium on, pp. 761–764. IEEE (2002)

  5. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1), S61–S72 (2009)

    Article  Google Scholar 

  6. Cao, Y., Miller, M., Mori, S., Winslow, R.L., Younes, L., et al.: Diffeomorphic matching of diffusion tensor images. In: Computer vision and pattern recognition workshop, 2006. CVPRW’06. Conference on, pp. 67–67. IEEE (2006)

  7. Yeo, B.T., Vercauteren, T., Fillard, P., Pennec, X., Golland, P., Ayache, N., Clatz, O.: Dti registration with exact finite-strain differential. In: Biomedical imaging: from nano to macro, 2008. ISBI 2008. 5th IEEE International Symposium on, pp. 700–703. IEEE (2008)

  8. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Non-parametric diffeomorphic image registration with the demons algorithm. Med. Image Comput. Comput. Assist. Interv. MICCAI 2007, 319–326 (2007)

    Google Scholar 

  9. Sweet, A., Pennec, X.: Log-domain diffeomorphic registration of diffusion tensor images. In: Biomedical image registration, pp. 198–209. Springer (2010)

  10. Zhang, Z., Wang, J., Zha, H.: Adaptive manifold learning. Pattern Anal. Mach. Intell. IEEE Trans. 34(2), 253–265 (2012)

    Article  Google Scholar 

  11. Arsigny, V.: Processing data in lie groups: an algebraic approach. application to non-linear registration and diffusion tensor mri. PhD thesis, Ecole Polytechnique X (2006)

  12. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323–2326 (2000)

    Article  ADS  Google Scholar 

  13. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  ADS  Google Scholar 

  14. Mahony, R., Manton, J.H.: The geometry of the newton method on non-compact lie groups. J. Glob. Optim. 23(3–4), 309–327 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Arsigny, V., Fillard, P., Pennec, X., Ayache, N.: Geometric means in a novel vector space structure on symmetric positive-definite matrices. SIAM J. Matrix Anal. Appl. 29(1), 328–347 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Arsigny, V., Commowick, O., Pennec, X., Ayache, N.: A log-euclidean framework for statistics on diffeomorphisms. In: Medical image computing and computer-assisted intervention–MICCAI 2006, pp. 924–931. Springer (2006)

  17. Noblet, V., Heinrich, C., Heitz, F., Armspach, J.-P.: 3-D deformable image registration: a topology preservation scheme based on hierarchical deformation models and interval analysis optimization. Image Process. IEEE Trans. 14(5), 553–566 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Lin, X., Qiu, T., Morain-Nicolier, F., Ruan, S.: A topology preserving non-rigid registration algorithm with integration shape knowledge to segment brain subcortical structures from mri images. Pattern Recognit. 43(7), 2418–2427 (2010)

    Article  MATH  Google Scholar 

  19. Zhang, Z., Zha, H.: Principal manifolds and nonlinear dimension reduction via local tangent space alignement. Department of computer science and engineering, Pennsylvania State University, Tech. Rep. CSE-02-019 (2002)

  20. Vaillancourt, D., Spraker, M., Prodoehl, J., Abraham, I., Corcos, D., Zhou, X., Comella, C., Little, D.: High-resolution diffusion tensor imaging in the substantia nigra of de novo parkinson disease. Neurology 72(16), 1378–1384 (2009)

    Article  Google Scholar 

  21. Woods, R.P., Grafton, S.T., Holmes, C.J., Cherry, S.R., Mazziotta, J.C.: Automated image registration: I. General methods and intrasubject, intramodality validation. J. Comput. Assist. Tomogr. 22(1), 139–152 (1998)

    Article  Google Scholar 

  22. Jiang, H., van Zijl, P.C., Kim, J., Pearlson, G.D., Mori, S.: Dtistudio: resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 81(2), 106–116 (2006)

    Article  Google Scholar 

  23. Leemans, A., Sijbers, J., Verhoye, M., Van der Linden, A., Van Dyck, D.: Mathematical framework for simulating diffusion tensor mr neural fiber bundles. Magn. Reson. Med. 53(4), 944–953 (2005)

    Article  Google Scholar 

  24. Hesselink, L., Levy, Y., Lavin, Y.: The topology of symmetric, second-order 3d tensor fields. Vis. Comput. Graph. IEEE Trans. 3(1), 1–11 (1997)

    Article  Google Scholar 

  25. Barmpoutis, A., Vemuri, B.C., Shepherd, T.M., Forder, J.R.: Tensor splines for interpolation and approximation of dt-mri with applications to segmentation of isolated rat hippocampi. Med. Imaging IEEE Trans. 26(11), 1537–1546 (2007)

    Article  Google Scholar 

  26. Jellison, B.J., Field, A.S., Medow, J., Lazar, M., Salamat, M.S., Alexander, A.L.: Diffusion tensor imaging of cerebral white matter: a pictorial review of physics, fiber tract anatomy, and tumor imaging patterns. Am. J. Neuroradiol. 25(3), 356–369 (2004)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Sheng-Bu Industry-Academia-Research joint project of Education Ministry and Science & Technology Ministry of Guangdong Province (NO: 2012A090300001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Liu.

Appendix

Appendix

Solution for cost function

Given the current transformation \(\varphi ^k\), compute a update \(\varphi ^{(k+1)}\) by minimizing

$$\begin{aligned}&E(I_r,I_f,\varphi )\\ &\quad=\mathrm{Sim}(I_r,R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi )R(D_i))+\mathrm{Reg}(\varphi )\\ & \quad =\Vert I_r-R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi )R(D_i)\Vert ^2+\Vert \varphi \Vert ^2 \end{aligned}$$
(23)

For convenience, let \(\Lambda (\varphi )=I_r-R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi )R(D_i)\), we assume the linearization of \(\Lambda (\varphi )\) at a given point \(D_i\),

$$\begin{aligned} &\Lambda (\varphi (D_i\circ \mathrm{exp}(u)))\\ &\quad =I_r-R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi (D_i\circ \mathrm{exp}(u)))R(D_i)\\ &\quad =I_r-R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi (D_i\circ \mathrm{exp}(0)))R(D_i)+J(D_i).\varphi (D_i\circ \mathrm{exp}(u)) \end{aligned}$$
(24)

Equation (23) can be rewritten with the linearization in Eq. (24),

$$\begin{aligned} E(I_r,I_f,\varphi ) \approx \Bigg \Vert \begin{bmatrix} I_r-R(D_i)^\mathrm{T}log(I_f\circ \varphi ^k)R(D_i)\\ 0 \end{bmatrix} + \begin{bmatrix} J(D_i)\\ I \end{bmatrix} .\varphi ^{k+1} \Bigg \Vert ^2 \end{aligned}$$
(25)

the normal equation can be expressed in matrix form as follows,

$$\begin{aligned} \begin{bmatrix}J(D_i)^T\,I \end{bmatrix} . \begin{bmatrix} J(D_i)\\ I \end{bmatrix}.\varphi ^{k+1} =-\begin{bmatrix} J(D_i)^T&I \end{bmatrix}. \begin{bmatrix} I_r-R(D_i)^\mathrm{T}log(I_f\circ \varphi ^k)R(D_i)\\0 \end{bmatrix} \end{aligned}$$
(26)

which simplies into,

$$\begin{aligned} &(J(D_i)^T.J(D_i)+I).\varphi ^{k+1}\\ &\quad =-(I_r-R(D_i)^\mathrm{T}log(I_f\circ \varphi ^k)R(D_i)).J(D_i)^T\end{aligned}$$
(27)

solving for \(\varphi ^{(k+1)}\), we achieve,

$$\begin{aligned} \varphi ^{k+1}=\frac{I_r-R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi ^k)R(D_i)}{\Vert J(D_i)\Vert ^2+I}.J(D_i)^T \end{aligned}$$
(28)

where \(J(D_i)=-\bigtriangledown R(D_i)^\mathrm{T}\mathrm{log}(I_f\circ \varphi ^k)R(D_i)\) and \(R(D_i)=((J(D_i)J(D_i)^T)^{-\frac{1}{2}})J(D_i)\).

Finally, we can obtain the optimization solution by the Gauss–Newton iteration,

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Chen, L., Cai, H. et al. Adaptive registration of diffusion tensor images on lie groups. Opt Rev 23, 614–627 (2016). https://doi.org/10.1007/s10043-016-0231-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0231-9

Keywords

Navigation