Skip to main content
Log in

Optical and structural properties of PbI2 thin film produced via chemical dipping method

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

PbI2 thin films were deposited on glass substrates via chemical bath deposition. The characteristics of PbI2 thin films were examined through their structural and optical properties. X-ray diffraction spectra showed the presence of rhombohedral structure and atom planes were subject to change with the pH of the bath. Scanning electron microscope indicated uniform distribution of grains. Optical properties were examined via UV–VIS; optical spectrum of the thin films was measured at the range of 200–1100 nm wavelength. Optimum pH levels for producing thin films were found to be pH 4–5. It has been observed that transmission and optical band gap (E g) increased with the pH of the bath, which varied between 66–95 and 2.24–2.50 %, respectively; on the other hand film thickness of PbI2 thin films was decreased with the pH of the bath. Energy-dispersive X-ray spectroscopy analysis were in accordance with theoretical value of PbI2 at pH = 4 and 5. Refractive index was negatively correlated with pH of the chemical bath; it has been calculated as 1.97, 1.40, 1.29 and 1.24 for the films produced at pH 2, 3, 4 and 5. The results of the study were compared with similar studies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Shah, K.S., Bennett, P., Cirignano, L., Dmitriyev, Y., Klugerman, M., Mandal, K., Moy, L.P., Street, R.A., Squillante, M.R., Olschner, F., Moses, W.W.: Lead iodide optical detectors for gamma ray spectroscopy. Nucl. Sci. 44, 448–450 (1997)

    Article  Google Scholar 

  2. Fornaro, L., Saucedo, E., Mussio, L., Gancharov, A.: Towards epitaxial lead iodide films for X-ray digital imaging. IEEE Trans. Nucl. Sci. 49, 2274–2278 (2002)

    Article  ADS  Google Scholar 

  3. Street, R., Shah, K., Ready, S., Apte, R., Bennet, P., Klugerman, M., Dmitriyev, Y.: Integrated CMOS-selenium X-ray detector for digital mamography. Proc. SPIE 24, 204–209 (1998)

    Google Scholar 

  4. Bennet, P.R., Shah, K.S., Dmitriev, Y., Klugerman, M., Gupta, T., Squillante, M., Street, R., Partian, L., Zantai, G., Pavlyuchkova, R.: PbI2 thick films: growth, properties, and problems. Nucl. Inst. Method A 505, 259–269 (2003)

    ADS  Google Scholar 

  5. Artemyev, M.V., Rakovich, Y.P., Yablonski, G.P.: Effect of dc electric field on photoluminescence from quantum-confined PbI2 nanocrystals. J. Cryst. Growth 171, 447–452 (1997)

    Article  ADS  Google Scholar 

  6. Tanaka, K., Hosoya, T., Fukaya, R., Takeda, J.: A new luminescence due to an exciton-exciton collision process in lead iodide induced by two-photon absorption. J. Lum. 122–123, 421–423 (2007)

    Article  Google Scholar 

  7. Baibarac, M., Preda, N., Mihut, L., Baltog, I., Lefrant, S., Mevellec, J.Y.: On the optical properties of micro and nanometric size PbI2 particles. J. Phys. Cond. Mater. 16, 2345–2356 (2004)

    Article  ADS  Google Scholar 

  8. Lifshitz, E., Yassen, M., Bykov, L., Dag, I.: Nanometer-sized particles of PbI2 embedded in silica films. J. Phys. Chem. 98, 1459–1463 (1994)

    Article  Google Scholar 

  9. Jellison, G.E., Ramey, J.O., Boatner, A.A.: Optical functions of BiI3 as measured by generalized ellipsometry. Phys. Rev. B Cond. Mater. 59, 9718–9721 (1999)

    Article  ADS  Google Scholar 

  10. Cuna, A., Aguiar, I., Gancharov, A., Perez, M., Fornaro, L.: Correlation between growth orientation and growth temperature for bismuth tri-iodide films. Cryst. Res. Tech. 39, 899–905 (2004)

    Article  Google Scholar 

  11. Krautscheid, H., Vielsack, F.: [Pb18I44]8−—an iodoplumbate with an unusual structure. Angewandte Chemie Inter. Ed. Engl. 34, 2035–2037 (1995)

    Article  Google Scholar 

  12. Krautscheid, H., Vielsack, F.: Discrete and polymeric iodoplumbates with Pb3I10 building blocks: [Pb3I10]4−, [Pb7I22]8−, [Pb10I28]8−, [Pb3I10]4− and [Pb7I18]4−. J. Chem. Soc. Dalton Trans. 16, 2731–2735 (1999)

    Article  Google Scholar 

  13. Krautscheid, H., Lode, C., Vielsack, F., Vollmer, H.: Synthesis and crystal structures of iodoplumbate chains, ribbons and rods with new structural types. J. Chem. Soc. Dalton Trans. 7, 1099–1104 (2001)

    Article  Google Scholar 

  14. Fisher, G.A., Norman, N.C.: The structures of the group 15 element (III) halides and halogenoanions. Adv. Inorg. Chem. 41, 233–271 (1994)

    Article  Google Scholar 

  15. Hattori, T., Taira, T., Era, M., Tsutsui, T., Saito, S.: Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem. Phys. Lett. 254, 103–108 (1996)

    Article  ADS  Google Scholar 

  16. Era, M., Morimoto, S., Tsutsui, T., Saito, S.: Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. App. Phys. Lett. 65, 676–678 (1994)

    Article  ADS  Google Scholar 

  17. Guloy, A.M., Tang, Z.J., Miranda, P.B., Srdanov, V.I.: A new luminescent organic–inorganic hybrid compound with large optical nonlinearity. Adv. Mater. 13, 833–837 (2001)

    Article  Google Scholar 

  18. Eickmeier, H., Jaschinski, B., Hepp, A., Nuss, J., Reuter, H., Blachnik, R., Naturforsch, Z.: Tris(ethyldimethylphenylammonium)nonahalogenodibismuthates(III). J. Chem. Sci. 54, 305–313 (1999)

    Google Scholar 

  19. Devic, T., Evain, M., Moëlo, Y., Canadell, E., Senzier, P.A., Fourmigué, M., Batail, P.: Single crystalline commensurate metallic assemblages of π-slabs and CdI2-type layers: β-(EDT-TTF-I2) 2 [Pb5/61/6I2]3 and β-(EDT-TTF-I2)2[Pb2/3+ xAg1/3− 2xx I2]3, x = 0.05. J. Am. Chem. Soc 125, 3295–3301 (2003)

    Article  Google Scholar 

  20. Devic, T., Canadell, E., Auban-senzier, P., Batail, P.: (EDT-TTF-I2)2PbI3·H2O: an ambient pressure metal with a β′ donor slab topology. J. Mater. Chem. 14, 135–137 (2004)

    Article  Google Scholar 

  21. Dugan, A.E., Henish, H.K.: Fundamental optical absorption and photo- conduction in PbI2 single crystals. J. Phys. Chem. Solid. 28, 1885–1890 (1967)

    Article  ADS  Google Scholar 

  22. Hagihara, T., Iwamoto, K., Fukumoto, K., Ayai, N.: Chemical reactions and transport processes in lead iodide single crystals. J. Phys. Colloq. 41, C297–C300 (1980)

    Article  Google Scholar 

  23. Zhu, X.H., Wei, Z.R., Jin, Y.R., Xiang, A.P.: Growth and characterization of a PbI2 single crystal used for gamma ray detectors. Cryst. Res. Tech. 42, 456–459 (2007)

    Article  Google Scholar 

  24. Mamazza Jr, R., Morel, D.L., Ferekides, C.S.: Transparent conducting oxide thin films of Cd2SnO4 prepared by RF magnetron co-sputtering of the constituent binary oxides. Thin Solid Films 484, 26–33 (2005)

    Article  ADS  Google Scholar 

  25. Ferro, R., Rodriguez, J.A., Vigil, O., Morales-Acevedo, A.: Chemical composition and electrical conduction mechanism for CdO: F thin films deposited by spray pyrolysis. Mater. Sci. Eng., B 87, 83–86 (2001)

    Article  Google Scholar 

  26. Callister, W.D.: Materials science and engineering—an introduction. Wiley, New York (1997)

    Google Scholar 

  27. Pejova, B., Grozdanov, I., Tanusevski, A.: Optical and thermal band gap energy of chemically deposited bismuth(III) selenide thin films. Mater. Chem. Phys. 83, 245–249 (2004)

    Article  Google Scholar 

  28. Benramdane, N., Murad, W.A., Misho, R.H., Ziane, M., Kebbab, Z.: A chemical method for the preparation of thin films of CdO and ZnO. Mater. Chem. Phys. 48, 119–123 (1997)

    Article  Google Scholar 

  29. Akaltun, Y., Yıldırım, M.A., Ateş, A., Yıldırım, M.: The relationship between refractive index-energy gap and the film thickness effect on the characteristic parameters of CdSe thin films. Opt. Commun. 284, 2307–2311 (2011)

    Article  ADS  Google Scholar 

  30. Liu, Y., Daum, P.H.: The effect of refractive index on size distributions and light scattering coefficients derived from optical particle counters. J. Aer. Sci. 31, 945–957 (2000)

    Article  Google Scholar 

  31. Heller, W., Pugh, T.L.: Experimental investigations on the effect of light scattering upon the refractive index of colloidal particles. J. Colloid Sci. 12, 294–307 (1957)

    Article  Google Scholar 

  32. Pendrotti, F.L., Pedrotti, L.S.: Introduction to optics. Prentice-Hall, Upper Saddle River, NJ (1993)

    Google Scholar 

  33. Kudenov, M.W., Craven-Jones, J., Aumiller, R., Vandervlugt, C., Dereniak, E.L.: Faceted grating prism for a computed tomographic imaging spectrometer. Opt. Eng. 51, 16 (2012)

    Article  Google Scholar 

  34. Dirk, C.W., Durizk, J., Delgado, M.F., Olguin, M.: A prism–grating–prism spectral imaging approach. Stud. Conserv. 54, 77–89 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to İ. A. Kariper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariper, İ.A. Optical and structural properties of PbI2 thin film produced via chemical dipping method. Opt Rev 23, 401–408 (2016). https://doi.org/10.1007/s10043-016-0218-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-016-0218-6

Keywords

Navigation