Skip to main content
Log in

Far infrared (THz) absorption spectra for the quantitative differentiation of calcium carbonate crystal structures: Exemplified in mixtures and in paper coatings

  • Special Section: The Tenth Japan-Finland Joint Symposium on Optics in Engineering “OIE’13, Utsunomiya”
  • Regular Papers
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

In this paper, far-infrared (FIR) spectroscopic techniques have been employed to detect different calcium carbonate crystal concentrations in powder mixtures. We have compared absorption spectral features of both pure and mixtures of natural ground calcium carbonate (GCC) and synthetic precipitated calcium carbonate (PCC). It is evident that the absorbance data differentiate clearly and unequivocally between calcite and aragonite in the spectral range of 2–18 THz. Also, from the absorbance measurement of two sets of mixtures, we have revealed a linear relationship between the ratio of some selected absorbance peaks of the mixtures and concentration of a particular pigment within the mixture. This innovative technique could be a novel, practicable technique for quality control or for analyzing coating and/or filler pigments and extenders in the paper making and printing industries. Finally, we have proven in the case of paper that, surface roughness and print color play no role as far as the locations and magnitudes of the absorbance spectral features are concerned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Strachan, P. F. Taday, D. A. Newnham, K. C. Gordon, J. A. Zeitler, M. Pepper, and T. Rades: J. Pharm. Sci. 94 (2005) 837.

    Article  Google Scholar 

  2. M. Koch, S. Hunsche, M. C. Nuss, J. Feldman, and J. Fromm: Wood Sci. Technol. 32 (1998) 421.

    Article  Google Scholar 

  3. M. Reid and R. Fedosejevs: Appl. Opt. 45 (2006) 2766.

    Article  ADS  Google Scholar 

  4. D. Banerjee, W. von Spiegel, M. D. Thomson, S. Schabel, and H. G. Roskos: Opt. Express 16 (2008) 9060.

    Article  ADS  Google Scholar 

  5. J. B. Jackson, M. Mourou, J. Labaune, J. F. Whitaker, I. N. Duling, III, S. L. Williamson, C. Lavier, M. Menu, and G. A. Mourou: Meas. Sci. Technol. 20 (2009) 075502.

    Article  ADS  Google Scholar 

  6. Y. Oyama, L. Zhen, T. Tanabe, and M. Kagaya: NDT&E Int. 42 (2009) 28.

    Article  Google Scholar 

  7. T. M. Todoruk, I. D. Hartley, and M. E. Reid: IEEE Trans. Terahertz Sci. Technol. 2 (2012) 123.

    Article  Google Scholar 

  8. E. R. Cowley and A. K. Pant: Phys. Rev. B 8 (1973) 4795.

    Article  ADS  Google Scholar 

  9. D. Tomerini and G. M. Day: in Terahertz Spectroscopy and Imaging, ed. K.-E. Peiponen, J. A. Zeitler, and M. Kuwata-Gonokami, (Springer, Berlin, 2012) Chap. 7, p. 151.

  10. M. Mizuno, K. Fukunaga, S. Saito, and I. Hosako: J. Eur. Opt. Soc. Rapid Publ. 4 (2009) 09044.

    Article  Google Scholar 

  11. P. Gane, P. Silfsten, C.-M. Tåg, P. Pääkkönen, J. Hiltunen, K. Kuivalainen, A. Oksman, and K.-E. Peiponen: J. Print Media Technol. Res. 2 (2012) 81.

    Google Scholar 

  12. I. Niskanen, J. Räty, and K.-E. Peiponen: Appl. Spectrosc. 62 (2008) 399.

    Article  ADS  Google Scholar 

  13. K.-E. Peiponen, V. Kontturi, I. Niskanen, M. Juuti, J. Räty, H. Koivula, and M. Toivakka: Meas. Sci. Technol. 19 (2008) 115601.

    Article  ADS  Google Scholar 

  14. J. Räty, P. Pääkkönen, and K.-E. Peiponen: Opt. Express 20 (2012) 2835.

    Article  ADS  Google Scholar 

  15. P. Silfsten, R. Dutta, P. Pääkkönen, C.-M. Tåg, P. A. C. Gane, and K.-E. Peiponen: Meas. Sci. Technol. 23 (2012) 125202.

    Article  ADS  Google Scholar 

  16. K.-E. Peiponen, E. M. Vartiainen, T. Unuma, J. A. Zeitler, P. Silfsten, T. Venäläinen, and H. Kishida: Appl. Phys. Lett. 102 (2013) 181110.

    Article  Google Scholar 

  17. P. Bawuah, P. Silfsten, A. Sarkar, K. Kordas, J.-P. Mikkola, and K.-E. Peiponen: Vib. Spectrosc. 68 (2013) 241.

    Article  Google Scholar 

  18. E. J. Heilweil and M. Campbell: NIST THz spectral database.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prince Bawuah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bawuah, P., Kiss, M.Z., Silfsten, P. et al. Far infrared (THz) absorption spectra for the quantitative differentiation of calcium carbonate crystal structures: Exemplified in mixtures and in paper coatings. OPT REV 21, 373–377 (2014). https://doi.org/10.1007/s10043-014-0057-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-014-0057-2

Keywords

Navigation