Skip to main content
Log in

Multifactor-controlled mid-infrared spectral and emission characteristic of carbonate minerals (MCO3, M = Mg, Ca, Mn, Fe)

  • Original Paper
  • Published:
Physics and Chemistry of Minerals Aims and scope Submit manuscript

Abstract

Carbonate minerals have been playing an important role in determining the history of the earth's atmosphere, geology, and hydrology and have received extensive attention. In this study, infrared spectral characteristics and infrared radiation properties of four carbonate minerals (calcite, rhodochrosite, siderite, magnesite) were highlighted and investigated by using X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), energy dispersive X-ray spectrometer (EDS), differential scanning calorimeter (DSC) and infrared spectroscopy (IR) (absorption and emission spectroscopy). Infrared absorption and thermal emission spectra systematically illustrated the effect of cations (Ca2+, Mg2+, Fe2+, Mn2+) on shifting the positions and infrared performance of the carbonate absorption bands. Three specific modes of the carbonate anion (CO32−) in mid-infrared range, derived from the out-of-plane bending, asymmetric stretching, and in-plane bending vibration (ν2, ν3, and ν4 modes, respectively) were found to be blue-shifted with the decrease of cationic radius, bond length and lattice volume. The average emissivity of calcite, rhodochrosite, siderite, and magnesite were calculated as 0.954, 0.934, 0.907, and 0.883, respectively, in the temperature range of 50–155 °C and the mid-infrared range of 400–2000 cm−1. Emissivity and thermal radiation performance of carbonate minerals can be influenced by several interplaying factors. In particular, higher emissivity was proportional to longer bond length (cation-oxygen and carbon–oxygen with linear correlation coefficients (R2) of 0.751 and 0.721, respectively) and larger cationic radius (R2 = 0.872), which gave rise to lower vibrational frequency, narrower vibration range, and reduced absorbed energy. Furthermore, the heat capacity of four minerals presented a positive correlation with their infrared radiant energy within the temperature. It thus can be concluded that complex and multifactor interactions occur within the crystal structure affecting the fundamental vibrational frequencies of CO32− group, and infrared performance was consequently influenced. This paper can provide theoretical reference for demonstrating the effect of crystal structure on infrared radiation performance and spectral characteristics of various minerals, which is conducive to distinguish minerals based on their features in infrared spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig.8

Similar content being viewed by others

References

  • Adler HH, Kerr PF (1963) Infrared spectra, symmentry and structure relations of some carbonate minerals American Mineralogist. J Earth Planet Mater 48:839–853

    Google Scholar 

  • Argast S, Donnelly TW (1987) The chemical discrimination of clastic sedimentary components. J Sediment Res 57:813–823

    Google Scholar 

  • Brusentsova TN, Peale RE, Maukonen D, Harlow GE, Boesenberg JS, Ebel D (2010) Far infrared spectroscopy of carbonate minerals. Am Miner 95:1515–1522

    Article  Google Scholar 

  • Chatzitheodoridis E, Turner G (1990) Secondary minerals in the Nakhla Meteorite. Meteorit Planet Sci 25:354–354

    Google Scholar 

  • Chester R, Elderfield H (1967) The application of infrared absorption spectroscopy to carbonate mineralogy. Sedimentology 9:5–21

    Article  Google Scholar 

  • Christensen PR, Harrison ST (1993) Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings on rocks. J Geophys Res Solid Earth 98:19819–19834

    Article  Google Scholar 

  • Christensen PR, Bandfield JL, Hamilton VE, Howard DA, Lane MD, Piatek JL, Ruff SW, Stefanov WL (2000) A thermal emission spectral library of rock-forming minerals. J Geophys Res Planets 105:9735–9739

    Article  Google Scholar 

  • Clayton RN, Mayeda TK (1988) Isotopic composition of carbonate in EETA 79001 and its relation to parent body volatiles. Geochim Cosmochim Acta 52:925–927

    Article  Google Scholar 

  • Cuthbert F, Rowland RA (1947) Differential thermal analysis of some carbonate minerals American Mineralogist. J Earth Planet Mater 32:111–116

    Google Scholar 

  • Debye P (1912) Zur theorie der spezifischen wärmen. Ann Phys 344:789–839

    Article  Google Scholar 

  • Dickinson WR, Suczek CA (1979) Plate tectonics and sandstone compositions. Aapg Bull 63:2164–2182

    Google Scholar 

  • Ditmars DA, Douglas TB (1971) Measurement of the relative enthalpy of pure α-Al2O3 (NBS heat capacity and enthalpy standard reference material No. 720) from 273 to 1173 K. J Res Nat Bur Stand A 75A(5):401-420

  • Dubrawski J, Channon A, Warne SSJ (1989) Examination of the siderite-magnesite mineral series by Fourier transform infrared spectroscopy. Am Miner 74:187–190

    Google Scholar 

  • Edwards HG, Villar SEJ, Jehlicka J, Munshi T (2005) FT–Raman spectroscopic study of calcium-rich and magnesium-rich carbonate minerals Spectrochimica Acta Part A. Mol Biomol Spectrosc 61:2273–2280

    Article  Google Scholar 

  • Effenberger H, Mereiter Κ, Zemann J (1981) Crystal structure refinements of magnesite, calcite, rhodochrosite, siderite, smithonite, and dolomite, with discussion of some aspects of the stereochemistry of calcite type carbonates. Zeitschrift für Kristallographie-Crystalline Materials 156:233–244

    Article  Google Scholar 

  • Elderfield H, Chester R (1971) The effect of periodicity on the infrared absorption frequency v4 of anhydrous normal carbonate minerals american mineralogist. J Earth Planet Mater 56:1600–1606

    Google Scholar 

  • Farmer V (1974) Mineralogical society monograph 4: the infrared spectra of minerals. The Mineralogical Society, London, 427

    Book  Google Scholar 

  • Fralick PW, Kronberg BI (1997) Geochemical discrimination of clastic sedimentary rock sources. Sed Geol 113:111–124

    Article  Google Scholar 

  • Frost RL, Palmer SJ (2011) Infrared and infrared emission spectroscopy of nesquehonite Mg(OH)(HCO3).2H2O-implications for the formula of nesquehonite. Spectrochim Acta A Mol Biomol Spectrosc 78:1255–1260

    Article  Google Scholar 

  • Frost RL, Bahfenne S, Graham J (2008a) Infrared and infrared emission spectroscopic study of selected magnesium carbonate minerals containing ferric iron–implications for the geosequestration of greenhouse gases. Spectrochim Acta A Mol Biomol Spectrosc 71:1610–1616

    Article  Google Scholar 

  • Frost RL, Martens WN, Wain DL, Hales MC (2008b) Infrared and infrared emission spectroscopy of the zinc carbonate mineral smithsonite. Spectrochim Acta A Mol Biomol Spectrosc 70:1120–1126

    Article  Google Scholar 

  • Gaffey SJ (1987) Spectral reflectance of carbonate minerals in the visible and near infrared (0.35–2.55 um): anhydrous carbonate minerals. J Geophys Res Solid Earth 92:1429–1440

    Article  Google Scholar 

  • García AC, Latifi M, Chaouki J (2020) Kinetics of calcination of natural carbonate minerals. Miner Eng 150:106279

    Article  Google Scholar 

  • Goldsmith A (1959) Thermophysical properties of solid materials. Armour Research Foundation, Wright Air Development Center, Technical reporter. 58-476

  • Gooding JL, Wentworth SJ, Zolensky ME (1991) Aqueous alteration of the Nakhla meteorite. Meteorit Planet Sci 26(2):135–143

    Google Scholar 

  • Gunasekaran S, Anbalagan G, Pandi S (2006) Raman and infrared spectra of carbonates of calcite structure. J Raman Spectrosc Int J Orig Work Asp Raman Spectrosc Includ Higher Order Process Brillouin Rayleigh Scatt 37(9):892–899

    Google Scholar 

  • Hamilton VE (2000) Thermal infrared emission spectroscopy of the pyroxene mineral series. J Geophys Res Planets 105:9701–9716

    Article  Google Scholar 

  • Hapke B (1996) A model of radiative and conductive energy transfer in planetary regoliths. J Geophys Res Planets 101:16817–16831

    Article  Google Scholar 

  • Hardgrove CJ, Rogers AD, Glotch TD, Arnold JA (2016) Thermal emission spectroscopy of microcrystalline sedimentary phases: Effects of natural surface roughness on spectral feature shape. J Geophys Res Planets 121:542–555

    Article  Google Scholar 

  • Herzberg G (1945) Molecular spectra and molecular structure. Vol. II: Infrared and Raman spectra of Polyatomic Molecules. Van Nostrand-Reinhold, New York

    Google Scholar 

  • Holland TJB, Powell R (1990) An enlarged and updated internally consistent thermodynamic dataset with uncertainties and correlations: the system K2O-Na2O-CaO-MgO-MnO-FeO-Fe2O3-Al2O3-TiO2-SiO2-C-H2-O2. J Metamorph Geol 8(1):89–124

    Article  Google Scholar 

  • Holland TJB, Powell R (1998) An internally consistent thermodynamic data set for phases of petrological interest. J Metamorph Geol 16(3):309–343

    Article  Google Scholar 

  • Hook SJ, Gabell AR, Green AA, Kealy PS (1992) A comparison of techniques for extracting emissivity information from thermal infrared data for geologic studies. Remote Sens Environ 42:123–135

    Article  Google Scholar 

  • Huang C, Kerr PF (1960) Infrared study of the carbonate minerals American Mineralogist. J Earth Planet Mater 45:311–324

    Google Scholar 

  • Jacobs MHG, de Jong BHWS (2009) Thermodynamic mixing properties of olivine derived from lattice vibrations. Phys Chem Miner 36:365–389

    Article  Google Scholar 

  • Jacobs GK, Kerrick DM, Krupka KM (1981) The high-temperature heat capacity of natural calcite (CaCO3). Phys Chem Minerals 7:55–59

    Article  Google Scholar 

  • Jaworske DA (1993) Thermal modeling of a calorimetric technique for measuring the emittance of surfaces and coatings. Thin Solid Films 236:146–152

    Article  Google Scholar 

  • Jones GC, Jackson B (2012) Infrared transmission spectra of carbonate minerals. Springer Science & Business Media, New York.

    Google Scholar 

  • Jovanovski G, Stefov V, Šoptrajanov B, Boev B (2002) Minerals from Macedonia. IV Discrimination between some carbonate minerals by FTIR spectroscopy Neues Jahrbuch für Mineralogie-Abhandlungen. J Mineral Geochem 177:241–253

    Google Scholar 

  • Keller WD, Spotts JH, Biggs DL (1952) Infrared spectra of some rock forming minerals. Am J Sci 250:453–471

    Article  Google Scholar 

  • Kieffer SW (1979) Thermodynamics and lattice vibrations of minerals 1. Mineral heat capacities and their relationships to simple lattice vibrational models. Rev Geophys 17:1–19

    Article  Google Scholar 

  • King P, Ramsey M, McMillan P, Swayze G (2004) Laboratory Fourier transform infrared spectroscopy methods for geologic samples. Infrared Spectrosc Geochem Explor Remote Sens 33:57–91

    Google Scholar 

  • Klein CHJ, CS, (1977) Manual of mineralogy. John Wiley Sons, New York

    Google Scholar 

  • Koga N, Yamane Y (2008) Thermal behaviors of amorphous calcium carbonates prepared in aqueous and ethanol media. J Therm Anal Calorim 94(2):379–387

    Article  Google Scholar 

  • Koga N, Nakagoe Y, Tanaka H (1998) Crystallization of amorphous calcium carbonate. Thermochim Acta 318:239–244

    Article  Google Scholar 

  • Korabel’nikov DV (2018) Vibrational and thermal properties of oxyanionic crystals. Phys Solid State 60:571–580

    Article  Google Scholar 

  • Lane MD (1997) Thermal emission spectroscopy of carbonates and evaporites: Experimental, theoretical, and field studies, Ph.D. dissertation, Arizona State University, Tempe

    Google Scholar 

  • Lane MD (1999) Midinfrared optical constants of calcite and their relationship to particle size effects in thermal emission spectra of granular calcite. J Geophys Res Planets 104:14099–14108

    Article  Google Scholar 

  • Lane MD, Christensen PR (1997) Thermal infrared emission spectroscopy of anhydrous carbonates. J Geophys Res Planets 102:25581–25592

    Article  Google Scholar 

  • Lide D (1990) Handbook of chemistry physics, 71st edn. CRC Press Boston

    Google Scholar 

  • Lyon RJP (1965) Analysis of rocks by spectral infrared emission (8 to 25 microns). Econ Geol 60:715–736

    Article  Google Scholar 

  • Makarounis O (1967) Heat capacity by the radiant energy absorption technique. 2nd Thermophysics Specialist Conference. 1–6

  • Maslen E, Streltsov V, Streltsova N, Ishizawa N (1995) Electron density and optical anisotropy in rhombohedral carbonates. III. Synchrotron X-ray studies of CaCO3, MgCO3 and MnCO3. Acta Crystallogr Sect B Struct Sci 51:929–939

    Article  Google Scholar 

  • Mckay DS, Gibson EK, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273:924–930

    Article  Google Scholar 

  • Michalski JR, Kraft MD, Sharp TG, Williams LB, Christensen PR (2005) Mineralogical constraints on the high-silica martian surface component observed by TES. Icarus 174:161–177

    Article  Google Scholar 

  • Michalski JR, Kraft MD, Sharp TG, Williams LB, Christensen PR (2006) Emission spectroscopy of clay minerals and evidence for poorly crystalline aluminosilicates on mars from thermal emission spectrometer data. J Geophys Res 111(E3):1–14

    Google Scholar 

  • Michel FM, MacDonald J, Feng J, Phillips BL, Ehm L, Tarabrella C, Parise JB, Reeder RJ (2008) Structural characteristics of synthetic amorphous calcium carbonate. Chem Mater 20:4720–4728

    Article  Google Scholar 

  • Nair AM, Mathew G (2017) Geochemical modelling of terrestrial igneous rock compositions using laboratory thermal emission spectroscopy with an overview on its applications to Indian Mars Mission. Planet Space Sci 140:62–73

    Article  Google Scholar 

  • Reeder RJ (1983) Crystal chemistry of the rhombohedral carbonates. Rev Mineral Geochem 11:1-47

  • Rivkin A, Volquardsen E, Clark B (2006) The surface composition of Ceres: discovery of carbonates and iron-rich clays. Icarus 185:563–567

    Article  Google Scholar 

  • Robie RA, Hemingway BS (1994) Heat capacities of synthetic grossular (Ca3Al2Si3O12), macro-crystals of magnesite ((Mg0.991Fe0.005Ca0.003Mn0.001) CO3), high-temperature superconductors YBa2Cu3O6+x and BiCaSrCu2O6+x, and type 321 stainless steel. United States Geological Survey. Open File Report, 94–223.

  • Robie RA, Haselton H, Hemingway BS (1984) Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K. Am Mineral 69:349–357

    Google Scholar 

  • Ruff SW, Christensen PR, Barbera PW, Anderson DL (1997) Quantitative thermal emission spectroscopy of minerals: a laboratory technique for measurement and calibration. J Geophys Res Solid Earth 102:14899–14913

    Article  Google Scholar 

  • Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42:83–106

    Article  Google Scholar 

  • Salisbury JW, Walter LS, Vergo N (1987) Mid-infrared (2.1–25 um) spectra of minerals. US Geological Survey

  • Santillán J, Williams Q (2004) A high-pressure infrared and X-ray study of FeCO3 and MnCO3: comparison with CaMg (CO3)2-dolomite. Phys Earth Planet Inter 143:291–304

    Article  Google Scholar 

  • Scheetz B, White W (1977) Vibrational spectra of the alkaline earth double carbonates. Am Miner 62:36–50

    Google Scholar 

  • Scholle PA, Bebout DG, Moore CH (1983) Carbonate depositional environments. American Association of Petroleum Geologists, Memoir 33, Tulsa, Okla

  • Treiman AH, Barrett RA, Gooding JL (1993) Preterrestrial aqueous alteration of the Lafayette (SNC) meteorite. Meteoritics 28:86–97

    Article  Google Scholar 

  • Walter LS, Salisbury JW (1989) Spectral characterization of igneous rocks in the 8 to 12μm region. J Geophys Res Solid Earth 94:9203–9213

    Article  Google Scholar 

  • Wenrich ML, Christensen PR (1996) Optical constants of minerals derived from emission spectroscopy: application to quartz. J Geophys Res Solid Earth 101:15921–15931

    Article  Google Scholar 

  • Zhu Y, Li Y, Ding H, Lu A, Li Y, Wang C (2020) Infrared emission properties of a kind of natural carbonate: interpretation from mineralogical analysis. Phys Chem Miner 47:1–15

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Natural Science Foundation of China (Grant No. 91851208 and 41820104003), the National Key Research and Development Program (2019YFC1805901).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongrui Ding or Anhuai Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 920 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Li, Y., Ding, H. et al. Multifactor-controlled mid-infrared spectral and emission characteristic of carbonate minerals (MCO3, M = Mg, Ca, Mn, Fe). Phys Chem Minerals 48, 15 (2021). https://doi.org/10.1007/s00269-021-01140-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00269-021-01140-y

Keywords

Navigation