Skip to main content
Log in

Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

We demonstrate dynamic control of the effective area (A eff) of photonic crystal fibers (PCFs) in the range of 18.1–8.22 μm2 and the mode field diameter in the range of 4.78–3.42 μm. This control was realized by altering their structural properties and varying the germanium (Ge) doping rate, which changed the refractive index difference (Δn Ge) between 1.0 and 3.0% relative to the refractive index of the silica cladding. This was achieved by adjusting the Ge doping rate in the core and changing the radius (d core) of the doped region, i.e., by changing the equivalent refractive index, using numerical calculations. Numerical results were verified by comparison with experimental results for a fabricated Gedoped PCF obtained by far-field scanning based on the ITU-T Petermann II definition. The proposed approach will simultaneously decrease Aeff and achieves high light confinement and high nonlinearity in PCFs. It enables architectonics/controllability of highly nonlinear PCFs with passive optical devices in photonic networks and life science applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. C. Knight, T. A. Birks, P. St. J. Russell, and D. M. Atkin: Opt. Lett. 21 (1996) 1547.

    Article  ADS  Google Scholar 

  2. J. C. Knight: Nature 424 (2003) 847.

    Article  ADS  Google Scholar 

  3. S. M. A. Razzak, Y. Namihira, F. Begum, K. Miyagi, S. Kaijage, N. H. Hai, T. Kinjo, and N. Zou: Opt. Rev. 14 (2007) 165.

    Article  Google Scholar 

  4. F. Begum, Y. Namihira, S. M. A. Razzak, S. Kaijage, K. Miyagi, N. H. Hai, and N. Zou: Opt. Rev. 14 (2007) 120.

    Article  Google Scholar 

  5. F. Begum, Y. Namihira, S. M. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou: Opt. Commun. 282 (2009) 1416.

    Article  ADS  Google Scholar 

  6. F. Begum, Y. Namihira, S. M. A. Razzak, S. Kaijage, N. H. Hai, T. Kinjo, K. Miyagi, and N. Zou: Opt. Laser Technol. 41 (2009) 679.

    Article  ADS  Google Scholar 

  7. K. Saitoh and M. Koshiba: Opt. Express 12 (2004) 2027.

    Article  ADS  Google Scholar 

  8. K. Saitoh, T. Fujisawa, T. Kirihara, and M. Koshiba: Opt. Express 14 (2006) 6572.

    Article  ADS  Google Scholar 

  9. M. Koshiba and K. Saitoh: Opt. Lett. 29 (2004) 1739.

    Article  ADS  Google Scholar 

  10. J. Mertz: Curr. Opin. Neurobiol. 14 (2004) 610.

    Article  Google Scholar 

  11. M. Ohmi, M. Nakamura, S. Morimoto, and M. Haruna: Opt. Rev. 7 (2000) 353.

    Article  Google Scholar 

  12. K. Miyagi and Y. Namihira: OECC, 2011, p. 7.

    Google Scholar 

  13. Y. Namihira: Electron. Lett. 30 (1994) 262.

    Article  Google Scholar 

  14. Y. Namihira: Electron. Lett. 33 (1997) 1483.

    Article  Google Scholar 

  15. K. Petermann: Electron. Lett. 19 (1983) 712.

    Article  Google Scholar 

  16. K. Miyagi and Y. Namihira: OFMC, 2009, p. 67.

    Google Scholar 

  17. Y. Namihira, K. Miyagi, and S. M. A. Razzak: OECC, 2009, Tul3.

    Google Scholar 

  18. M. Liao, C. Chaudhari, G. Qin, X. Yan, C. Kito, T. Suzuki, Y. Ohishi, M. Matsumoto, and T. Misumi: Opt. Express 17 (2009) 21608.

    Article  Google Scholar 

  19. ITU-T Recommendation: Tech. Rep. G.650.1: ITU-T (2007).

    Google Scholar 

  20. Y. Namihira: SOFM, 2004, p. 33.

    Google Scholar 

  21. Y. Namihira, K. Miyagi, K. Kaneshima, M. Tadakuma, C. Vinegoni, G. Pietraand, and K. Kawanami: SOFM, 2002, p. 15.

    Google Scholar 

  22. K. Miyagi, Y. Namihira, S. M. A. Razzak, S. F. Kaijage, and F. Begum: Opt. Rev. 17 (2010) 388.

    Article  Google Scholar 

  23. K. Miyagi and Y. Namihira: IEEE TENCON, 2010, p. 1622.

    Google Scholar 

  24. K. Nakajima and M. Ohashi: IEEE Photonics Technol. Lett. 14 (2002) 492.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuya Miyagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyagi, K., Namihira, Y., Kasamatsu, Y. et al. Dynamic control of mode field diameter and effective area by germanium doping of hexagonal photonic crystal fibers. OPT REV 20, 327–331 (2013). https://doi.org/10.1007/s10043-013-0059-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-013-0059-5

Keywords

Navigation