Skip to main content
Log in

Spatial-mode analysis in broad-area semiconductor lasers subjected to optical feedback

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

Broad-area semiconductor lasers are unstable light sources even in solitary oscillation owing to the spatial dependence of laser emission along the stripe width. One of the instabilities that occur in the dynamics of broad-area semiconductor lasers is filamentation. Laser oscillations are further affected by optical feedback. In the presence of optical feedback, higher spatial modes related to the filamentations are either excited or suppressed depending on the feedback conditions. As a result, the beam shape of the time-averaged pattern is greatly affected by optical feedback. In this study, we perform the decomposition of spatial-mode components for time-averaged near-field patterns in the presence of optical feedback. A method of simulated annealing (SA) is employed for the decomposition. The beam profiles are well reconstructed by the SA method. A quantitative discussion of the excitation or suppression of higher spatial modes in relation to the optical feedback conditions is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Ohtsubo: Semiconductor Lasers: Stability, Instability and Chaos (Springer, Berlin, 2013) 3rd ed.

    Book  Google Scholar 

  2. O. Hess, S. W. Koch, and J. V. Moloney: IEEE J. Quantum Electron. 31 (1995) 35.

    Article  ADS  Google Scholar 

  3. I. Fischer, O. Hess, W. Elsäßer, and E. Göbel: Europhys. Lett. 35 (1996) 579.

    Article  ADS  Google Scholar 

  4. O. Hess and T. Kuhn: Phys. Rev. A 54 (1996) 3360.

    Article  ADS  Google Scholar 

  5. J. R. Marciante and G. P. Agrawal: IEEE Photonics Technol. Lett. 10 (1998) 54.

    Article  ADS  Google Scholar 

  6. T. Burkhard, M. O. Ziegler, I. Fischer, and W. Elsäßer: Chaos Solitons Fractals 10 (1999) 845.

    Article  Google Scholar 

  7. N. Gaciu, E. Gehring, and O. Hess: in Handbook of Chaos Control, ed. E. Schöll and G. Schuster (Wiley-VCH, Weinheim, 2007) Chap. 22.

  8. D. Scholz, H. Braun, U. T. Schwarz, S. Brüninghoff, D. Queren, A. Lell, and U. Strauss: Opt. Express 16 (2008) 6846.

    Article  ADS  Google Scholar 

  9. Y. Fujita and J. Ohtsubo: Appl. Phys. Lett. 87 (2005) 031112.

    Article  ADS  Google Scholar 

  10. S. K. Mandre, I. Fischer, and W. Elsäßer: Opt. Commun. 244 (2005) 355.

    Article  ADS  Google Scholar 

  11. S. Wolff, A. Rodionov, V. E. Sherstobitov, C. Doering, and H. Fouckhardt: Opt. Commun. 265 (2006) 642.

    Article  ADS  Google Scholar 

  12. T. Tachikawa, S. Takimoto, R. Shogenji, and J. Ohtsubo: IEEE J. Quantum Electron. 39 (2010) 448.

    Google Scholar 

  13. Y. Champagne, S. Mailhot, and N. McCarthy: IEEE J. Quantum Electron. 31 (1995) 795.

    Article  ADS  Google Scholar 

  14. J. R. Marciante and G. P. Agrawal: IEEE J. Quantum Electron. 32 (1996) 1630.

    Article  ADS  Google Scholar 

  15. C. Simmendinger, D. Preißer, and O. Hess: Opt. Express 5 (1999) 48.

    Article  ADS  Google Scholar 

  16. S. K. Mandre, I. Fischer, and W. Elsäßer: Opt. Lett. 28 (2003) 1135.

    Article  ADS  Google Scholar 

  17. S. Wolff, A. Rodionov, V. E. Sherstobitov, and H. Fouckhardt: IEEE J. Quantum Electron. 39 (2003) 448.

    Article  ADS  Google Scholar 

  18. G. L. Abbas, S. Yang, V. W. S. Chan, and J. G. Fujimoto: IEEE J. Quantum Electron. 24 (1988) 609.

    Article  ADS  Google Scholar 

  19. T. Pawletko, M. Houssin, M. Knoop, M. Vedel, and F. Vedel: Opt. Commun. 174 (2000) 223.

    Article  ADS  Google Scholar 

  20. J. Kaiser, I. Fischer, W. Elsäßer, E. Gehrig, and O. Hess: IEEE J. Sel. Top. Quantum Electron. 10 (2004) 968.

    Article  Google Scholar 

  21. S. Takimoto, T. Tachikawa, R. Shogenji, and J. Ohtsubo: IEEE Photonics Technol. Lett. 21 (2009) 1051.

    Article  Google Scholar 

  22. T. Asatsuma, Y. Takiguchi, S. Frederico, A. Furukawa, and S. Hirata: Proc. SPIE 6104 (2006) 61040C.

    Article  ADS  Google Scholar 

  23. T. Heil, I. Fischer, W. Elsäßer, B. Krauskopf, K. Green, and A. Gavrielides: Phys. Rev. E 67 (2003) 066214.

    Article  MathSciNet  ADS  Google Scholar 

  24. A. Yariv and Y. Pochi: Photonics (Oxford University Press, New York, 2007) 6th ed., Chap. 2.

    Google Scholar 

  25. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller: J. Chem. Phys. 21 (1953) 1087.

    Article  ADS  Google Scholar 

  26. S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi: Science 220 (1983) 671.

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. E. Arts and J. Korst: Simulated Annealing and Boltzmann Machines (Wiley, Chichester, U.K., 1990).

    Google Scholar 

  28. J. Ohtsubo and K. Nakajima: Opt. Commun. 86 (1991) 265.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junji Ohtsubo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takeda, A., Shogenji, R. & Ohtsubo, J. Spatial-mode analysis in broad-area semiconductor lasers subjected to optical feedback. OPT REV 20, 308–313 (2013). https://doi.org/10.1007/s10043-013-0056-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-013-0056-8

Keywords

Navigation