Skip to main content
Log in

Characterization of small-signal intensity modulation of single-mode fiber grating Fabry-Perot laser source

  • Regular Paper
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A comprehensive study on the small-signal intensity modulation (IM) characteristics of a fiber grating Fabry-Perot (FGFP) laser is numerically investigated. The effect of external optical feedback (OFB), temperature, injection current, cavity volume, nonlinear gain compression factor, and fiber grating (FG) parameters on IM characteristics are presented. The temperature dependence (TD) of IM is calculated according to the TD of laser cavity parameters instead of using the well-known Parkove relationship. It has been shown that the optimum external fiber length (L ext) is 3.1 cm. The optimum range of working temperature for FGFP laser is between 23 to 27 °C. We also show that by increasing the laser injection current from 10 to 60 mA, the IM peak amplitude decreased from 6.3 to 0.2 dB and the relaxation-oscillation frequency (ROF) is shifted from 1.2 GHz towards higher frequency of 5.48 GHz. In addition, the AR coating reflectivity and gain compression factor have no significant effect on the IM. The study indicates that a stable operation and excellent modulation characteristic can be obtained after optimization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Sliwczynski and P. Krehlikd: Int. J. Electron. Commun. 64 (2010) 484.

    Article  Google Scholar 

  2. X. H. Jia, D. Z. Zhong, F. Wang, and H. T. Chen: Opt. Commun. 279 (2007) 356.

    Article  ADS  Google Scholar 

  3. H. Kong, Z. Wu, J. Wu, Y. Xie, X. Lin, and G. Xia: Chaos Solitons Fractals 36 (2008) 2436.

    Article  Google Scholar 

  4. J. I. Hashimoto, T. Kato, H. Nakanishi, K. Yoshida, G. Sasaki, A. Yamaguchi, T. Katsuyama, and N. Yamabayashi: IEEE Photonics Technol. Lett. 14 (2002) 1617.

    Article  ADS  Google Scholar 

  5. J. I. Hashimoto, T. Takagi, T. Kato, G. Sasaki, M. Shigehara, K. Murashima, M. Shiozaki, and T. Iwashima: J. Lightwave Technol. 21 (2003) 2002.

    Article  ADS  Google Scholar 

  6. T. Sato, F. Yamamoto, K. Tsuji, H. Takesue, and T. Horiguchi: IEEE Photonics Technol. Lett. 14 (2002) 1001.

    Article  ADS  Google Scholar 

  7. F. Y. Shih, C. H. Yeh, C. W. Chow, C. H. Wang, and S. Chi: Opt. Fiber Technol. 16 (2010) 46.

    Article  ADS  Google Scholar 

  8. M. Premaratne, A. J. Lowery, Z. Ahmed, and D. Novak: IEEE J. Sel. Top. Quantum Electron. 3 (1997) 290.

    Article  Google Scholar 

  9. R. A. Vazquez-Sanchez, E. A. Kuzin, C. M. Garca-Lara, M. May-Alarcon, J. L. Camas-Anzueto, G. C. Righini, and S. V. Miridonov: Optik 121 (2010) 2040.

    Article  ADS  Google Scholar 

  10. C. H. Yeh and C. W. Chow: Opt. Fiber Technol. 16 (2010) 271.

    Article  ADS  Google Scholar 

  11. S. Liu, X. Dong, J. Sun, and P. Shum: Opt. Commun. 282 (2009) 4729.

    Article  ADS  Google Scholar 

  12. K. Y. Park and C. H. Lee: IEEE J. Quantum Electron. 44 (2008) 995.

    Article  Google Scholar 

  13. C. H. Yeh and S. Chi: Opt. Commun. 256 (2005) 73.

    Article  ADS  Google Scholar 

  14. H. G. Yu, Y. Wang, C. Q. Xu, J. Wojcik, and P. Mascher: IEEE J. Quantum Electron. 41 (2005) 1492.

    Article  ADS  Google Scholar 

  15. A. Naumenko, P. Besnard, N. Loiko, G. Ughetto, and J. C. Bertreux: IEEE J. Quantum Electron. 39 (2003) 1216.

    Article  ADS  Google Scholar 

  16. F. N. Timofeev, G. Simin, M. Shatalov, S. Gurevich, P. Bayvel, R. Wyatt, I. Lealman, and R. Kashyap: Fiber Integrated Opt. 19 (2000) 327.

    Article  ADS  Google Scholar 

  17. D. Lin, L. Wang, and J. J. He: J. Lightwave Technol. 28 (2010) 3128.

    ADS  Google Scholar 

  18. Z. H. Fu, Y. X. Wang, D. Z. Yang, and Y. H. Shen: Laser Phys. Lett. 6 (2009) 594.

    Article  ADS  Google Scholar 

  19. T. H. Wang, Y. L. Ju, X. M. Duan, B. Q. Yao, X. T. Yang, and Y. Z. Wang: Laser Phys. Lett. 6 (2009) 117.

    Article  ADS  Google Scholar 

  20. N. Dogru: IEEE J. Sel. Top. Quantum Electron. 15 (2009) 644.

    Article  Google Scholar 

  21. F. Pittoni, M. Gioannini, and I. Montrosset: IEEE J. Sel. Top. Quantum Electron. 7 (2001) 280.

    Article  Google Scholar 

  22. X. H. Jia, D. Z. Zhong, F. Wang, and H. T. Chen: Opt. Commun. 279 (2007) 356.

    Article  ADS  Google Scholar 

  23. L. S. Yan, A. Yi, W. Pan, and B. Luo: IEEE Photonics Technol. Lett. 22 (2010) 1391.

    Article  ADS  Google Scholar 

  24. M. Silver, W. E. Booji, S. Malik, A. Galbraith, S. Uppal, P. F. McBrien, G. M. Berry, P. D. Ryder, S. J. Chandler, D. M. Aktin, S. Chan, R. Harding, and R. M. Ash: IEEE Photonics Technol. Lett. 14 (2002) 741.

    Article  ADS  Google Scholar 

  25. I. Fatadin, D. Ives, and M. Wicks: IEEE J. Quantum Electron. 42 (2006) 934.

    Article  ADS  Google Scholar 

  26. M. Ahmed and A. Lafi: Opt. Laser Technol. 40 (2008) 809.

    Article  ADS  Google Scholar 

  27. R. Lang and K. Kobayashi: IEEE J. Quantum Electron. (1980) 347.

  28. R. W. Tkach and A. R. Chraplyvy: J. Lightwave Technol. 4 (1986) 1655.

    Article  ADS  Google Scholar 

  29. P. Besnard, B. Meziane, and G. M. Stephan: IEEE J. Quantum Electron. 29 (1993) 1271.

    Article  ADS  Google Scholar 

  30. K. Petermann: IEEE J. Sel. Top. Quantum Electron. 1 (1995) 480.

    Article  Google Scholar 

  31. G. H. M. Tartwijk and D. Lenstra: Quantum Semiclass. Opt. 7 (1995) 87.

    Article  ADS  Google Scholar 

  32. Y. Zhang, M. Sato, and N. Tanno: Optik 112 (2001) 91.

    Article  ADS  Google Scholar 

  33. J. P. Morgado and A. T. Cartaxo: IEEE J. Sel. Top. Quantum Electron. 9 (2003) 1315.

    Article  Google Scholar 

  34. M. Silver, W. E. Booji, S. Malik, A. Galbraith, S. Uppal, P. F. McBrien, G. M. Berry, P. D. Ryder, S. J. Chandler, D. M. Aktin, S. Chan, R. Harding, and R. M. Ash: IEEE Photonics Technol. Lett. 14 (2002) 741.

    Article  ADS  Google Scholar 

  35. G. Genty, A. Grohn, H. Talvitie, M. Kaivola, and H. Ludvigsen: IEEE J. Quantum Electron. 36 (2000) 1193.

    Article  ADS  Google Scholar 

  36. A. Othonos and K. Kalli: Fiber Bragg Grating: Fundamentals and Applications in Telecommunications and Sensing (Artech House, London, 1999) p. 97.

    Google Scholar 

  37. K. Kallimani and M. J. O’Mahon: IEE Proc.-Optoelectron. 145 (1998) 319.

    Article  Google Scholar 

  38. M. Ming and K. Liu: Principle and Applications of Optical Communication (McGraw-Hill, New York, 1996) p. 610.

    Google Scholar 

  39. G. P. Agrawal and N. K. Dutta: Long-Wavelength Semiconductor Lasers (Van Nostrand Reinhold, New York, 1986) p. 255.

    Google Scholar 

  40. Z. H. Quan and D. Hui: Proc. IEEE Conf. Automation and Logistics, 2009, p. 1406.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisham Kadhum Hisham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hisham, H.K., Abas, A.F., Mahdiraji, G.A. et al. Characterization of small-signal intensity modulation of single-mode fiber grating Fabry-Perot laser source. OPT REV 19, 64–70 (2012). https://doi.org/10.1007/s10043-012-0014-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-012-0014-x

Keywords

Navigation