Skip to main content
Log in

100 GHz free spectral range-tunable multi-wavelength fiber laser using single–multi–single mode fiber interferometer

  • Published:
Applied Physics B Aims and scope Submit manuscript

Abstract

Six single–multi–single (SMS) mode fiber-based Mach–Zehnder Interferometers (MZI) with different spooling radii are demonstrated as spatial mode filtering elements for multi-wavelength laser generation. Free spectral range (FSR) tuning of the multi-wavelength output generated is realized by alternating between the six MZIs, which have different macro-bending losses. Additional FSR tuning is also realized by changing the spooling radius of the two-mode step index fiber section within the MZI setups from 80 mm to 30 mm, giving an FSR tuning range of 0.89–0.99 nm. All generated multi-wavelength outputs show high stability over a test period of 100 min. The proposed multi-wavelength lasers are highly suitable for various microwave photonics applications the field of such as microwave signal source generation and microwave photonic filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Jäger, A. Stöhr, Microwave photonics—from concepts to applications, in Proceedings of German Micronic Conference (GeMiC 2005), ed. by W. Menzel (Ulm, 2005)

  2. R. Espinola, M. Tsai, J.T. Yardley, R. Osgood, Fast and low-power thermooptic switch on thin silicon-on-insulator. IEEE Photonics Technol. Lett. 15, 1366–1368 (2003)

    Article  ADS  Google Scholar 

  3. G. Baili, M. Alouini, C. Moronvalle, D. Dolfi, F. Bretenaker, Broad-bandwidth shot-noise-limited class-A operation of a monomode semiconductor fiber-based ring laser. Opt. Lett. 31, 62–64 (2006)

    Article  ADS  Google Scholar 

  4. H. Hillmer, J. Daleiden, C. Prott, F. Römer, S. Irmer, V. Rangelov, A. Tarraf, S. Schüler, M. Strassner, Potential for micromachined actuation of ultra-wide continuously tunable optoelectronic devices. Appl. Phys. B 75, 3–13 (2002)

    Article  ADS  Google Scholar 

  5. L. Maleki, Sources: the optoelectronic oscillator. Nat. Photonics 5, 728 (2011)

    Article  ADS  Google Scholar 

  6. Y. Tian, P. Lewin, D. Pommerenke, J. Wilkinson, S. Sutton, Partial discharge on-line monitoring for HV cable systems using electro-optic modulators. IEEE Trans. Dielectr. Electr. Insul. 11, 861–869 (2004)

    Article  Google Scholar 

  7. D. Grodensky, D. Kravitz, A. Zadok, Ultra-wideband microwave-photonic noise radar based on optical waveform generation. IEEE Photonics Technol. Lett. 24, 839–841 (2012)

    Google Scholar 

  8. S. Pappert, C. Sun, R. Orazi, T. Weiner, Microwave fiber optic links for shipboard antenna applications, in Phased Array Systems and Technology, 2000. Proceedings. 2000 IEEE International Conference (IEEE, 2000), pp. 345–348

  9. R. Waterhouse, D. Novack, Realizing 5G: Microwave photonics for 5G mobile wireless systems. IEEE Microwave Mag. 16, 84–92 (2015)

    Article  Google Scholar 

  10. B. Cabon, Y. Le Guennec, M. Lourdiane, G. Maury, Photonic mixing in RF modulated optical links, in Lasers and Electro-Optics Society, 2006. LEOS 2006. 19th Annual Meeting of the IEEE (IEEE, 2006), pp. 408–409

  11. J. Capmany, P. Munoz, Integrated microwave photonics for radio access networks. J. Lightwave Technol. 32, 2849–2861 (2014)

    Article  ADS  Google Scholar 

  12. H.-H. Lu, W.-S. Tsai, C.-Y. Chen, H.-C. Peng, CATV/radio-on-fiber transport systems based on EAM and optical SSB modulation technique. IEEE Photonics Technol. Lett. 16, 2565–2567 (2004)

    Article  ADS  Google Scholar 

  13. H.-H. Lu, C.-L. Ying, W.-I. Lin, Y.-W. Chuang, Y.-C. Chi, S.-J. Tzeng, CATV/ROF transport systems based on light injection/optoelectronic feedback techniques and photonic crystal fiber. Opt. Commun. 273, 389–393 (2007)

    Article  ADS  Google Scholar 

  14. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, S. Sales, Microwave photonic signal processing. J. Lightwave Technol. 31, 571–586 (2013)

    Article  ADS  Google Scholar 

  15. R.A. Minasian, Photonic signal processing of microwave signals. IEEE Trans. Microw. Theory Tech. 54, 832–846 (2006)

    Article  ADS  Google Scholar 

  16. R. Takahashi, T. Nakahara, K. Takahata, H. Takenouchi, T. Yasui, N. Kondo, H. Suzuki, Ultrafast optoelectronic packet processing for asynchronous, optical-packet-switched networks. J. Opt. Netw. 3, 914–930 (2004)

    Article  Google Scholar 

  17. L. Xiong, P. Hofmann, A. Schülzgen, N. Peyghambarian, J. Albert, Short monolithic dual-wavelength single-longitudinal-mode DBR phosphate fiber laser. Appl. Opt. 53, 3848–3853 (2014)

    Article  ADS  Google Scholar 

  18. J. Zhou, L. Xia, X. Cheng, X. Dong, P. Shum, Photonic generation of tunable microwave signals by beating a dual-wavelength single longitudinal mode fiber ring laser. Appl. Phys. B 91, 99–103 (2008)

    Article  ADS  Google Scholar 

  19. Y.-H. Lo, Y.-C. Wu, S.-C. Hsu, Y.-C. Hwang, B.-C. Chen, C.-C. Lin, Tunable microwave generation of a monolithic dual-wavelength distributed feedback laser. Opt. Express 22, 13125–13137 (2014)

    Article  ADS  Google Scholar 

  20. J. Yao, Photonics to the rescue: a fresh look at microwave photonic filters. IEEE Microw. Mag. 16, 46–60 (2015)

    Article  Google Scholar 

  21. J. Harris, P. Lu, H. Larocque, Y. Xu, L. Chen, X. Bao, Highly sensitive in-fiber interferometric refractometer with temperature and axial strain compensation. Opt. Express 21, 9996–10009 (2013)

    Article  ADS  Google Scholar 

  22. H. Qu, G. Yan, M. Skorobogatiy, Interferometric fiber-optic bending/nano-displacement sensor using plastic dual-core fiber. Opt. Lett. 39, 4835–4838 (2014)

    Article  ADS  Google Scholar 

  23. R.T. Schermer, J.H. Cole, Improved bend loss formula verified for optical fiber by simulation and experiment. IEEE J. Quantum Electron. 43, 899–909 (2007)

    Article  ADS  Google Scholar 

  24. D. Marcuse, Field deformation and loss caused by curvature of optical fibers. JOSA 66, 311–320 (1976)

    Article  ADS  Google Scholar 

  25. Q. Li, C.-H. Lin, P.-Y. Tseng, H.P. Lee, Demonstration of high extinction ratio modal interference in a two-mode fiber and its applications for all-fiber comb filter and high-temperature sensor. Opt. Commun. 250, 280–285 (2005)

    Article  ADS  Google Scholar 

  26. H. Ahmad, A.A. Jasim, Stable C-band fiber laser with switchable multi-wavelength output using coupled microfiber Mach–Zehnder interferometer. Opt. Fiber Technol. 36, 105–114 (2017)

    Article  ADS  Google Scholar 

  27. X. Feng, C. Lu, H.Y. Tam, P.K.A. Wai, Reconfigurable microwave photonic filter using multiwavelength erbium-doped fiber laser. IEEE Photonics Technol. Lett. 19, 1334–1336 (2007)

    Article  ADS  Google Scholar 

  28. S. Pan, C. Lou, Stable multiwavelength dispersion-tuned actively mode-locked erbium-doped fiber ring laser using nonlinear polarization rotation. IEEE Photonics Technol. Lett. 18, 1451–1453 (2006)

    Article  ADS  Google Scholar 

  29. W.C. Chang, J.H. Lin, T.Y. Liao, C.Y. Yang, Characteristics of noise-like pulse with broad bandwidth based on cascaded Raman scattering. Opt. Express 26, 31808–31816 (2018)

    Article  ADS  Google Scholar 

  30. L.M. Zhao, D.Y. Tang, Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser. Appl. Phys. B 83, 553 (2006)

    Article  ADS  Google Scholar 

  31. N.A. Ahmad, S.H. Dahlan, N.A. Cholan, H. Ahmad, I.S. Amiri, Z.C. Tiu, Dual-wavelength thulium fluoride fiber laser based on SMF–TMSIF–SMF interferometer as potential source for microwave generation in 100-GHz region. IEEE J. Quantum Electron. 54, 1–7 (2018)

    Google Scholar 

  32. G.-K. Chang, C. Liu, 1–100 GHz microwave photonics link technologies for next-generation WiFi and 5G wireless communications, in Microwave Photonics (MWP), 2013 International Topical Meeting (IEEE, 2013), pp. 5–8

  33. J. Zhang, P. Tang, L. Tian, Z. Hu, T. Wang, H. Wang, 6–100 GHz research progress and challenges from a channel perspective for fifth generation (5G) and future wireless communication. Sci. China Inf. Sci. 60, 080301 (2017)

    Article  Google Scholar 

  34. A. Zendehnam, M. Mirzaei, A. Farashiani, L.H. Farahani, Investigation of bending loss in a single-mode optical fibre. Pramana 74, 591–603 (2010)

    Article  ADS  Google Scholar 

  35. J. Zhou, S. Fu, F. Luan, J.H. Wong, S. Aditya, P.P. Shum, K.E.K. Lee, Tunable multi-tap bandpass microwave photonic filter using a windowed Fabry–Perot filter-based multi-wavelength tunable laser. J. Lightwave Technol. 29, 3381–3386 (2011)

    Article  ADS  Google Scholar 

  36. X. Xue, Y. Xuan, H.-J. Kim, J. Wang, D.E. Leaird, M. Qi, A.M. Weiner, Programmable single-bandpass photonic RF filter based on Kerr comb from a microring. J. Lightwave Technol. 32, 3557–3565 (2014)

    Article  ADS  Google Scholar 

  37. X.-Y. Li, Y. Cao, D. Xu, Z.-R. Tong, J.-P. Yang, A widely tunable microwave photonic notch filter with adjustable bandwidth based on multi-wavelength fiber laser. Optoelectron. Lett. 13, 259–262 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Funding for this work was supported by Ministry of Higher Education (MoHE), Malaysia under the Grant GA 010-2014 (ULUNG) as well as the University of Malaya under the Grants RU 013-2018 and HiCoE Phase II Funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ahmad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, H., Ooi, S.I. & Tiu, Z.C. 100 GHz free spectral range-tunable multi-wavelength fiber laser using single–multi–single mode fiber interferometer. Appl. Phys. B 125, 99 (2019). https://doi.org/10.1007/s00340-019-7209-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00340-019-7209-9

Navigation