Skip to main content
Log in

Optimal Design of Multilayer Mirrors for Water-Window Microscope Optics

  • FAR INFRARED AND SHORT WAVELENGTH OPTICS
  • Published:
Optical Review Aims and scope Submit manuscript

Abstract

A small bandwidth of periodic multilayers at wavelengths 2.4–4.4 nm presents problems for the spectral matching of mirrors. This leads to low throughput of a Schwarzschild microscope and its sensitivity to technological errors in layer thickness. We consider two cures for these difficulties: aperiodic coatings and a lateral gradient of layer thickness. Our design of aperiodic multilayers maximizes the throughput of a microscope made at a fixed level of technology. The method includes a new merit function, fast procedure for its minimization, linkage between multilayers and an equation for a lateral gradient of layer thickness. Computation is performed for Sc/Cr coatings at 398 eV. It shows that the aperiodicity makes optics stable to technological errors, while the lateral gradient increases throughput, but enhances sensitivity to the errors. The best results are obtained for aperiodic mirrors with a lateral gradient of thickness, which assure both high microscope throughput and stability to the errors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. W. Berreman: Appl. Opt. 30 (1991) 1741.

    ADS  Google Scholar 

  2. K. Murakami, T. Oshino, H. Nakamura, M. Ohtani, and H. Nagata: Appl. Opt. 32 (1993) 7057.

    ADS  Google Scholar 

  3. M. Yamamoto, Y. Hotta, and M. Sato: Thin Solid Films 433 (2003) 224.

    Article  Google Scholar 

  4. Y. Adachi, H. Umetsu, S. Kubota, T. Hatano, and M. Yamamoto: The 7th Int. Conf. Physics of X-Ray Multilayer Structures, Rusutsu Resort, Japan, 2004.

    Google Scholar 

  5. J. Kirz and S. R. Williams: Ultramicroscopy 47 (1992) 55.

    Article  Google Scholar 

  6. G. Schmahl, D. Rudolph, B. Niemann, P. Guttman, J. Thieme, G. Schneider, M. Diehl, and T. Wilhein: Optik 93 (1993) 66.

    Google Scholar 

  7. D. Rudolph, G. Schmahl, B. Niemann, M. Diehl, J. Thieme, T. Wilhein, C. David, and K. Michelmann: in X-ray Microscopy IV, ed. V. V. Aristov and A. I. Erko (Bogorodskii Pechatnik, Chernogolovka, Moscow region, 1994) p. 381.

    Google Scholar 

  8. S. Nakayama, K. Haramura, G. M. Zeng, H. Daido, M. Nakatsuka, S. Nakai, N. Katakura, H. Nagata, and H. Aritome: Jpn. J. Appl. Phys. 33 (1994) L1280.

    Article  Google Scholar 

  9. G. A. Johansson, A. Holmberg, H. M. Hertz, and M. Berlund: Rev. Sci. Instrum. 73 (2002) 1193.

    Article  ADS  Google Scholar 

  10. A. K. Head: Proc. Phys. Soc. (London) 70 (1957) 945.

    Google Scholar 

  11. I. A. Artioukov and K. M. Krymski: Preprint of Lebedev Physical Institute N 30 (1998).

  12. K. Sakano and M. Yamamoto: Proc. SPIE 3767 (1999) 238.

  13. F. Eriksson, G. A. Johansson, H. M. Hertz, E. M. Gullikson, U. Kreissig, and J. Birch: Opt. Lett. 28 (2003) 2494.

    ADS  Google Scholar 

  14. J. B. Kortright and J. H. Underwood: Proc. SPIE 1343 (1990) 97.

    Google Scholar 

  15. K. D. Joensen, P. Voutov, A. Szenttgyorgyi, J. Roll, P. Gorenstein, P. Høghøj, and F. E. Christensen: Appl. Opt. 34 (1995) 7935.

    ADS  Google Scholar 

  16. A. V. Vinogradov and R. M. Fechtchenko: Nucl. Instrum. Methods Phys. Res., Sect. A 448 (2000) 142.

    Article  ADS  Google Scholar 

  17. I. V. Kozhevnikov, I. N. Bukreeva, and E. Ziegler: Nucl. Instrum. Methods Phys. Res., Sect. A 460 (2001) 424.

    Article  ADS  Google Scholar 

  18. D. S. Burenkov, Yu. A. Uspenskii, I. A. Artioukov, and A. V. Vinogradov: Quantum Electron. 35 (2005) 195.

    Article  Google Scholar 

  19. Yu, A. Uspenskii, J. F. Seely, N. L. Popov, A. V. Vinogradov, Yu. P. Pershin, and V. V. Kondratenko: J. Opt. Soc. Am. A 21 (2004) 298.

    Article  ADS  Google Scholar 

  20. M. Yamamoto and T. Namioka: Appl. Opt. 31 (1992) 1622.

    ADS  Google Scholar 

  21. B. L. Henke, E. M. Gullikson, and J. C. Davis: At. Data Nucl. Data Tables 54 (1993) 181.

    Article  ADS  Google Scholar 

  22. I. A. Artioukov, R. M. Fechtchenko, A. L. Udovskii, Yu. A. Uspenskii, and A. V. Vinogradov: Nucl. Instrum. Methods Phys. Res., Sect. A 517 (2004) 372.

    Article  ADS  Google Scholar 

  23. I. A. Artioukov, A. V. Vinogradov, Yu. S. Kas'yanov, and S. V. Savel'ev: Quantum Electron. 34 (2004) 691.

    Article  Google Scholar 

  24. S. S. Andreev, H. Ch. Mertins, Yu. Yu. Platonov, N. N. Salashchenko, F. Schäfers, E. A. Shamov, and L. A. Shmaenok: Nucl. Instrum. Methods Phys. Res., Sect. A 448 (2000) 133.

    Article  ADS  Google Scholar 

  25. I. A. Artioukov, Ye. Bugaev, O. Yu. Devizenko, R. M. Fechtchenko, Yu. S. Kasyanov, V. V. Kondratenko, S. A. Romanova, S. V. Saveliev, F. Schäfers, T. Feigl, Yu. A. Uspenskii, and A. V. Vinogradov: Proc. SPIE 5919 (2005) 59190E.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uspenskii, Y., Burenkov, D., Hatano, T. et al. Optimal Design of Multilayer Mirrors for Water-Window Microscope Optics. OPT REV 14, 64–73 (2007). https://doi.org/10.1007/s10043-007-0064-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10043-007-0064-7

Key words

Navigation