Skip to main content
Log in

Using the tidal method to develop a conceptual model and for hydraulic characterization at the Argentona research site, NE Spain

Utilisation de la méthode des marées en vue du développement d’un modèle conceptuel et d’une caractérisation hydraulique au droit du site de recherche d’Argentona, Nord Est de l’Espagne

Uso del método de mareas para la modelación conceptual y caracterización hidráulica de la Riera de Argentona, NE de España

西班牙东北部Argentona场地采用潮汐法概化模型和表征水力特性

Usando o método das marés para desenvolver um modelo conceitual e para caracterização hidráulica no local de pesquisa de Argentona, NE da Espanha

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Tidal response analysis in coastal aquifers represents a complex but unique low-cost aquifer-scale test to determine hydraulic diffusivity (\({D}_{\mathrm{h}}\)) and connectivity to the sea. Here, a simplified numerical methodology is applied to a well-characterized Mediterranean coastal aquifer—the Argentona experimental research site, NE Spain. First, a harmonic analysis was performed over a 2-month period to identify the main tidal constituents. Then, the amplitude attenuation and phase shift for 16 observation wells, located at different distances from the coastline, were evaluated. It was found that direct application of the tidal method, considering only the hydraulic effect and aquifer homogeneity, leads to \({D}_{\mathrm{h}} \mathrm{values}\) estimated from the amplitude attenuation one order of magnitude smaller than those derived from the phase shift. To better understand the aquifer’s response to tidal fluctuations, numerical simulations were performed, considering two different effects: (1) the hydraulic connection between the aquifer layers and the sea, and (2) the mechanical effect generated by the compression of the undersea aquifer portion. The simulations revealed that a specific stratified configuration and the inclusion of mechanical effects are required to accurately reproduce the observed wells’ head responses. A scale effect was observed when calibrating the main constituents separately. Thus, calibrating the short-period components resulted in higher \({D}_{\mathrm{h}}\) estimates. These numerical results demonstrate that mechanical effects can play a strong role in aquifer response to tides. This study provides the first application of the tidal method to a real aquifer considering both the hydraulic and mechanical effects generated by tides.

Résumé

L’analyse de la réponse aux marées dans des aquifères côtiers représente un test bon marché, complexe mais unique, à l’échelle d’un aquifère pour déterminer la diffusivité hydraulique (Dh) et la connectivité avec la mer. Ici, une méthodologie numérique simplifiée est appliquée à un aquifère côtier méditerranéen bien caractérisé—le site de recherche expérimentale d’Argentona, dans le Nord Est de l’Espagne. D’abord, une analyse harmonique a été réalisée sur une période de deux mois pour identifier les principales composantes de la marée. Ensuite, l’atténuation de l’amplitude et le déphasage ont été évalués sur 16 piézomètres situés à différentes distances du trait de côte. Il a été constaté que l’application directe de la méthode des marées, en ne tenant compte que de l’effet hydraulique et de l’homogénéité de l’aquifère, conduit à des valeurs de Dh estimées à partir de l’atténuation d’amplitude inférieures d’un ordre de grandeur à celles dérivées du déphasage. Pour une meilleure compréhension de la réponse de l’aquifère aux fluctuations de la marée, des simulations numériques ont été réalisées, en considérant deux effets distincts: (1) la connexion hydraulique entre les couches aquifères et la mer, et (2) l’effet mécanique engendré par la compression de la partie d’aquifère située sous la mer. Les simulations ont révélé qu’une configuration stratifiée spécifique et l’intégration des effets mécaniques sont nécessaires pour reproduire fidèlement les réponses de la charge observées dans les puits. Un effet d’échelle a été observé quand on calibre séparément les principaux constituants. Ainsi, la calibration des composants sur une période courte se traduit par des estimations plus fortes de \({D}_{\mathrm{h}}.\) Ces résultats numériques démontrent que les effets mécaniques peuvent jouer un rôle important dans la réponse de l’aquifère aux marées. Cette étude fournit la première application de la méthode des marées pour une prise en compte réelle des effets à la fois hydrauliques et mécaniques générés par les marées.

Resumen

El análisis de la respuesta a mareas en acuíferos costeros es complejo, pero representa un prueba económica y única a escala de acuífero para determinar la difusividad hidráulica (Dh) y la conectividad con el mar. Aquí se aplica una metodología numérica simplificada a un acuífero costero mediterráneo bien caracterizado (Argentona, en el NE de España). Se realizó primero un análisis de armónicos de la marea durante dos meses para identificar sus componentes. A continuación, se evaluaron la atenuación y cambio de fase en 16 pozos de observación, situados a varias distancias de la línea de costa. Se comprobó que, empleando el método tradicional (solo efecto hidráulico y acuífero homogéneo), los valores de Dh estimados a partir de la atenuación son un orden de magnitud menores que los deducidos del cambio de fase. Para entender mejor la respuesta del acuífero a las mareas, se realizaron simulaciones numéricas considerando (1) la conexión hidráulica entre el acuífero y el mar y (2) el efecto mecánico generado por la compresión de la porción submarina del acuífero. Las simulaciones revelaron que, para reproducir con precisión las respuestas de nivel observadas, se requiere una configuración estratificada específica y la inclusión de efectos mecánicos. Se observó un efecto de escala al calibrar las componentes principales por separado: al aumentar el periodo de las componentes disminuyó el valor calculado de Dh. Este estudio, que puede considerarse el primero en integrar los efectos hidráulicos y mecánicos, demuestra que es necesario incluir los estos últimos para interpretar la respuesta de los acuíferos a las mareas.

摘要

沿海含水层的潮汐响应分析是一种复杂而且独特的低成本的含水层尺度的确定水力传导系数 (\({D}_{\mathrm{h}}\))和与海水联系的试验。本文将简化的数值方法应用于有较好概化的地中海沿海含水层——西班牙东北部的Argentona试验场地。首先, 在两个月的时间内进行谐波分析, 以确定主要潮汐成分。然后, 评估16个观测井的振幅衰减和相位移动, 这些井位于距海岸线不同的距离。发现仅考虑水力效应和含水层均质性的潮汐法的直接应用, 会导致从振幅衰减估计的 \({D}_{\mathrm{h}}\) 值比从相位移动估计的 \({D}_{\mathrm{h}}\) 值小一个数量级。为了更好地理解含水层对潮汐波动的响应, 进行了数值模拟, 考虑了两种不同的影响: (1) 含水层与海水之间有水力联系, 以及 (2) 由于压缩海底含水层而产生的力学效应。模拟表明, 需要特定的层序和包含力学效应, 才能准确地重现观测井的压力响应。当分别校准主要成分时观察到了尺度效应。因此, 校准短周期成分导致更高的 \({D}_{\mathrm{h}}\) 估计值。这些数值结果证明了力学效应在含水层对潮汐波动的响应中可能发挥重要作用。本研究提供了将潮汐法应用于真实含水层并考虑潮汐产生的水力和力学效应的首个应用。

Resumo

A análise da resposta das marés em aquíferos costeiros representa um teste de escala de aquífero complexo, mas único e de baixo custo, para determinar a difusividade hidráulica (\({D}_{\mathrm{h}}\)) e a conectividade com o mar. Aqui, uma metodologia numérica simplificada é aplicada a um aquífero costeiro mediterrâneo bem caracterizado—o local de pesquisa experimental de Argentona, NE da Espanha. Primeiro, uma análise harmônica foi realizada durante um período de dois meses para identificar os principais constituintes das marés. Em seguida, foram avaliadas a atenuação de amplitude e mudança de fase para 16 poços de observação, localizados a diferentes distâncias da linha de costa. Verificou-se que a aplicação direta do método das marés, considerando apenas o efeito hidráulico e a homogeneidade do aquífero, leva a valores de \({D}_{\mathrm{h}}\) estimados a partir da atenuação da amplitude uma ordem de grandeza menor do que os derivados do deslocamento de fase. Para entender melhor a resposta do aquífero às flutuações das marés, foram realizadas simulações numéricas, considerando dois efeitos diferentes: (1) a conexão hidráulica entre as camadas do aquífero e o mar, e (2) o efeito mecânico gerado pela compressão da porção do aquífero submarino. As simulações revelaram que uma configuração estratificada específica e a inclusão de efeitos mecânicos são necessárias para reproduzir com precisão as respostas da cargas dos poços observados. Um efeito de escala foi observado ao calibrar os constituintes principais separadamente. Assim, calibrar os componentes de curto período resultou em estimativas de \({D}_{\mathrm{h}}\) mais altas. Esses resultados numéricos demonstram que os efeitos mecânicos podem desempenhar um papel importante na resposta do aquífero às marés. Este estudo fornece a primeira aplicação do método das marés a um aquífero real considerando os efeitos hidráulicos e mecânicos gerados pelas marés.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcaraz M, Carrera J, Cuello J, Guarracino L, Vives L (2021) Determining hydraulic connectivity of the coastal aquifer system of La Plata river estuary (Argentina) to the ocean by analysis of aquifer response to low-frequency tidal components. Hydrogeol J 29:1587–1599. https://doi.org/10.1007/s10040-021-02332-0

    Article  Google Scholar 

  • Arabelos DN, Papazachariou DZ, Contadakis ME, Spatalas SD (2011) A new tide model for the Mediterranean Sea based on altimetry and tide gauge assimilation. Ocean Sci 7(3):429–444. https://doi.org/10.5194/os-7-429-2011

    Article  Google Scholar 

  • Bear J (1999) Conceptual and mathematical modeling. In: Bear J, Cheng AHD, Sorek S, Ouazar D, Herrera I (eds) Seawater intrusion in coastal aquifers: concepts, methods and practices, vol 14. Springer Netherlands, Dordrecht, The Netherlands

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdofer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AM, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367(2–3):498–543

    Article  Google Scholar 

  • Carr PA, Van Der Kamp GS (1969) Determining aquifer characteristics by the tidal method. Water Resour Res 5(5):1023–1031. https://doi.org/10.1029/WR005i005p01023

    Article  Google Scholar 

  • Comte JC, Wilson C, Ofterdinger U, González-Quirós A (2017) Effect of volcanic dykes on coastal groundwater flow and saltwater intrusion: a field-scale multiphysics approach and parameter evaluation—volcanic dykes and groundwater flow. Water Resour Res 53(3):2171–2198. https://doi.org/10.1002/2016WR019480

    Article  Google Scholar 

  • de Toro C, Vieira R, Sevilla MJ (1994) Tidal models of the Mediterranean Sea. International Association of Geodesy Symposia book series (IAG SYMPOSIA, vol 113), Springer, Heidelberg, Germany

  • Del Val L, Carrera J, Martínez-Pérez L, Pool M, Saaltink MW, Folch A (2023) A method to interpret coastal aquifer pumping tests: removing noise and natural groundwater head fluctuations

  • Del Val L, Carrera J, Pool M, Martínez L, Casanovas C, Bour O, Folch A (2021) Heat dissipation test with fiber-optic distributed temperature sensing to estimate groundwater flux. Water Resour Res 57(3):e2020WR027228. https://doi.org/10.1029/2020WR027228

    Article  Google Scholar 

  • Diego-Feliu M, Rodellas V, Saaltink MW, Alorda-Kleinglass A, Goyetche T, Martínez-Pérez L, Folch A, Garcia-Orellana J (2021) New perspectives on the use of 224Ra/228Ra and 222Rn/226Ra activity ratios in groundwater studies. J Hydrol 596:126043. https://doi.org/10.1016/j.jhydrol.2021.126043

    Article  Google Scholar 

  • Drogue C, Razack M, Krivic P (1984) Survey of a coastal karstic aquifer by analysis of the effect of the sea-tide: example of the Kras of Slovenia, Yugoslavia. Environ Geol Water Sci 6(2):103–109. https://doi.org/10.1007/BF02509916

    Article  Google Scholar 

  • Emery WJ, Thomson RE (2001) Time-series analysis methods. In: Data analysis methods in physical oceanography, Elsevier, Amsterdam, 371 pp

  • Erskine AD (1991) The effect of tidal fluctuation on a coastal aquifer in the UK. Groundwater 29(4):556–562

    Article  Google Scholar 

  • Ferris JG (1952) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. https://doi.org/10.3133/70133368

  • Folch A, del Val L, Luquot L, Martínez-Pérez L, Bellmunt F, Le Lay H, Rodellas V, Ferrer N, Palacios A, Fernández S, Marazuela MA, Diego-Feliu M, Pool M, Goyetche T, Ledo J, Pezard P, Bour O, Queralt P, Marcuello A, Garcia-Orellana J, Saaltink MW, Vásquez-Suñé E, Carrera J (2020) Combining fiber optic DTS, cross-hole ERT and time-lapse induction logging to characterize and monitor a coastal aquifer. J Hydrol 588:125050. https://doi.org/10.1016/j.jhydrol.2020.125050

    Article  Google Scholar 

  • Gámez D, Simó JA, Lobo FJ, Barnolas A, Carrera J, Vázquez-Suņé E (2009) Onshore–offshore correlation of the Llobregat deltaic system, Spain: development of deltaic geometries under different relative sea-level and growth fault influences. Sed Geol 217(1–4):65–84

    Article  Google Scholar 

  • Geng X, Li H, Boufadel MC, Liu S (2009) Tide-induced head fluctuations in a coastal aquifer: effects of the elastic storage and leakage of the submarine outlet-capping. Hydrogeol J 17(5):1289–1296

    Article  Google Scholar 

  • Godin G (1972) The analysis of tides, University of Toronto Press, Toronto, 264 pp

  • Goyetche T, Luquot L, Carrera J, Pérez LM, Folch A (2022a) Identification and quantification of chemical reactions in a coastal aquifer to assess submarine groundwater discharge composition. Sci Total Environ 838:155978. https://doi.org/10.1016/j.scitotenv.2022.155978

    Article  Google Scholar 

  • Goyetche T, Pool M, Carrera J, Luquot L (2022b) Hydromechanical characterization of tide-induced head fluctuations in coastal aquifers: the role of delayed yield and minor permeable layers. J Hydrol 612:128128

    Article  Google Scholar 

  • Guarracino L, Carrera J, Vázquez-Suñé E (2012) Analytical study of hydraulic and mechanical effects on tide-induced head fluctuation in a coastal aquifer system that extends under the sea. J Hydrol 450–451:150–158. https://doi.org/10.1016/j.jhydrol.2012.05.015

    Article  Google Scholar 

  • Guo H, Jiao JJ, Li H (2010) Groundwater response to tidal fluctuation in a two-zone aquifer. J Hydrol 381(3–4):364–371. https://doi.org/10.1016/j.jhydrol.2009.12.009

    Article  Google Scholar 

  • Guomin L, Chongxi C (1991) Determining the length of confined aquifer roof extending under the sea by the tidal method. J Hydrol 123(1–2):97–104

    Article  Google Scholar 

  • Heath RC (1983) Basic ground-water hydrology. US Geol Surv Water Supply Pap 2220, 86 pp

  • Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from Earth tide analysis. Water Resour Res 23(10):1824–1832

    Article  Google Scholar 

  • Jacob CE (1950) Engineering hydraulics. In: Flow of ground water. Wiley, New York, pp 321–386

  • Jardani A, Dupont JP, Revil A, Massei N, Fournier M, Laignel B (2012) Geostatistical inverse modeling of the transmissivity field of a heterogeneous alluvial aquifer under tidal influence. J Hydrol 472–473:287–300. https://doi.org/10.1016/j.jhydrol.2012.09.031

    Article  Google Scholar 

  • Jiao JJ, Tang Z (1999) An analytical solution of groundwater response to tidal fluctuation in a leaky confined aquifer. Water Resour Res 35(3):747–751

    Article  Google Scholar 

  • Li G, Li H, Boufadel MC (2008) The enhancing effect of the elastic storage of the seabed aquitard on the tide-induced groundwater head fluctuation in confined submarine aquifer systems. J Hydrol 350(1–2):83–92. https://doi.org/10.1016/j.jhydrol.2007.11.037

    Article  Google Scholar 

  • Li H, Jiao JJ (2001a) Tide-induced groundwater fluctuation in a coastal leaky confined aquifer system extending under the sea. Water Resour Res 37(5):1165–1171. https://doi.org/10.1029/2000WR900296

    Article  Google Scholar 

  • Li H, Jiao JJ (2001b) Analytical studies of groundwater-head fluctuation in a coastal confined aquifer overlain by a semi-permeable layer with storage. Adv Water Resour 24(5):565–573

    Article  Google Scholar 

  • Li H, Jiao JJ (2003a) Influence of the tide on the mean water table in an unconfined, anisotropic, inhomogeneous coastal aquifer. Adv Water Resour 26(1):9–16. https://doi.org/10.1016/S0309-1708(02)00097-0

    Article  Google Scholar 

  • Li H, Jiao JJ (2003b) Tide-induced seawater–groundwater circulation in a multi-layered coastal leaky aquifer system. J Hydrol 274(1–4):211–224. https://doi.org/10.1016/S002-1694(02)00413-4

    Article  Google Scholar 

  • Li H, Li G, Cheng J, Boufadel MC (2007) Tide‐induced head fluctuations in a confined aquifer with sediment covering its outlet at the sea floor. Water Resour Res 43(3)

  • Martínez-Pérez L, Luquot L, Carrera J, Marazuela MA, Goyetche T, Pool M, Folch A (2022) A multidisciplinary approach to characterizing coastal alluvial aquifers to improve understanding of seawater intrusion and submarine groundwater discharge. J Hydrol 607:127510. https://doi.org/10.1016/j.jhydrol.2022.127510

    Article  Google Scholar 

  • Medina A, Alcolea A, Galarza G, Carrera J (2004) TRANSIN IV – Fortran code for solving the coupled non-linear flow and transport inverse problem. Hydrogeology Group, School of Civil Engineering, Technical University of Catalonia, Spain, 182 pp

  • Medina A, Carrera J (1996) Coupled estimation of flow and solute transport parameters. Water Resour Res 32(10):3063–3076

    Article  Google Scholar 

  • Medina A, Carrera J (2003) Geostatistical inversion of coupled problems: dealing with computational burden and different types of data. J Hydrol 281(4):251–264

    Article  Google Scholar 

  • Meier PM, Carrera J, Sanchez-Vila X (1999) A numerical study on the relationship between transmissivity and specific capacity in heterogeneous aquifers. Groundwater 37(4):611–617

    Article  Google Scholar 

  • Merritt ML (2004) Estimating hydraulic properties of the Floridan aquifer system by analysis of earth-tide, ocean-tide, and barometric effects, Collier and Hendry counties, Florida. US Geol Surv Water Resour Invest Repo 03-4267

  • Michael HA, Post VE, Wilson AM, Werner AD (2017) Science, society, and the coastal groundwater squeeze. Water Resour Res 53(4):2610–2617

    Article  Google Scholar 

  • Palacios A, Ledo JJ, Linde N, Luquot L, Bellmunt F, Folch A, Marcuello A, Queralt P, Pezard P, Martinez L, del Val L, Bosch D, Carrera J (2020) Time-lapse cross-hole electrical resistivity tomography (CHERT) for monitoring seawater intrusion dynamics in a Mediterranean aquifer. Hydrol Earth Syst Sci 24(4):2121–2139

    Article  Google Scholar 

  • R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/. Accessed Oct 2023

  • Ratner-Narovlansky Y, Weinstein Y, Yechieli Y (2020) Tidal fluctuations in a multi-unit coastal aquifer. J Hydrol 580:124222. https://doi.org/10.1016/j.jhydrol.2019.124222

    Article  Google Scholar 

  • Robinson CE, Xin P, Santos IR, Charette MA, Li L, Barry DA (2018) Groundwater dynamics in subterranean estuaries of coastal unconfined aquifers: controls on submarine groundwater discharge and chemical inputs to the ocean. Adv Water Resour 115:315–331

    Article  Google Scholar 

  • Rufí-Salís M, Garcia-Orellana J, Cantero G, Castillo J, Hierro A, Rieradevall J, Bach J (2019) Influence of land use changes on submarine groundwater discharge. Environ Res Commun 1(3):031005. https://doi.org/10.1088/2515-7620/ab1695

    Article  Google Scholar 

  • Sanchez‐Vila X, Guadagnini A, Carrera J (2006) Representative hydraulic conductivities in saturated groundwater flow. Rev Geophys 44(3). https://doi.org/10.1029/2005RG000169

  • Santoro AE (2010) Microbial nitrogen cycling at the saltwater–freshwater interface. Hydrogeol J 18(1):187–202

    Article  Google Scholar 

  • Schippers A, Neretin LN, Kallmeyer J, Ferdelman TG, Cragg BA, John Parkes R, Jørgensen BB (2005) Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria. Nature 433(7028):861–864

    Article  Google Scholar 

  • Taniguchi M, Tomotoshi I, Burnett WC, Shimada J (2007) Comprehensive evaluation of the groundwater-seawater interface and submarine groundwater discharge. IAHS Publ 312, IAHS, Wallingford, England, 86 pp

  • Trefry MG, Bekele E (2004) Structural characterization of an island aquifer via tidal methods: structural characterization of an island aquifer. Water Resour Res 40(1). https://doi.org/10.1029/2003WR002003

  • Trefry MG, Johnston CD (1998) Pumping test analysis for a tidally forced aquifer. Groundwater 36(3):427–433

    Article  Google Scholar 

  • Trglavcnik V, Morrow D, Weber KP, Li L, Robinson CE (2018) Analysis of tide and offshore storm-induced water table fluctuations for structural characterization of a coastal island aquifer. Water Resour Res 54:2749–2767. https://doi.org/10.1002/2017WR020975

    Article  Google Scholar 

  • Van Der Kamp GS (1972) Tidal fluctuations in a confined aquifer extending under the sea. Proc. of the 24th Int. Geological Congress, section 11, Hydrogeolgy, Montreal, 1972, pp 101–106

  • Wang C, Li H, Wan L, Wang X, Jiang X (2014) Closed-form analytical solutions incorporating pumping and tidal effects in various coastal aquifer systems. Adv Water Resour 69:1–12. https://doi.org/10.1016/j.advwatres.2014.03.003

    Article  Google Scholar 

  • Werner AD, Bakker M, Post VEA, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26. https://doi.org/10.1016/j.advwatres.2012.03.004

    Article  Google Scholar 

  • Zhang H (2021) Characterization of a multi-layer karst aquifer through analysis of tidal fluctuation. J Hydrol 601:126677

    Article  Google Scholar 

  • Zhou P, Li G, Lu Y (2016) Numerical modeling of tidal effects on groundwater dynamics in a multi-layered estuary aquifer system using equivalent tidal loading boundary condition: case study in Zhanjiang, China. Environ Earth Sci 75(2):117. https://doi.org/10.1007/s12665-015-5034-y

    Article  Google Scholar 

  • Zhou X (2008) Determination of aquifer parameters based on measurements of tidal effects on a coastal aquifer near Beihai, China. Hydrol Process 22(16):3176–3180. https://doi.org/10.1002/hyp.6906

    Article  Google Scholar 

  • Zhuang C, Zhou Z, Illman WA (2017) A joint analytic method for estimating aquitard hydraulic parameters. Groundwater 55(4):565–576. https://doi.org/10.1111/gwat.12494

    Article  Google Scholar 

Download references

Funding

This work was funded by the projects PID2019-110212RB-C21/C22 and CGL2016-77122-C2-1-R/2-R of the Spanish Government and the project TerraMar (grant no. ACA210/18/00007) of the Catalan Water Agency. We also acknowledge the Spanish Ministry of Economy, Industry and Competitiveness for the PhD fellowship (BES-2017-080028) from the FPI Program awarded to T. Goyetche. The author A. Folch is a Serra Húnter Fellow.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tybaud Goyetche or Jesus Carrera.

Ethics declarations

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Tidal harmonics amplitude and time-shift, filtering error and calibrated amplitude

Appendix: Tidal harmonics amplitude and time-shift, filtering error and calibrated amplitude

In Table 2, the amplitude (A) and the time-shift (φ) are presented for each of the tidal harmonics measured at the sea. In Table 3, \({\mathrm{A}}_{0}/A\) and \(\omega {t}_{\mathrm{s}}\) are presented for the observation points. The values presented in Table 2 correspond to the values obtained applying Eqs. (1), (2) and (3).

In Table 3, values are obtained from the calibration process by numerical modeling. \(A/{A}_{0}\) and \(\omega {t}_{\mathrm{s}}\) are not present for the “full” and the “harmonic sum” such that the \(A\) and \({t}_{\mathrm{s}}\) identification is not feasible.

See Tables 2, 3 and 4

Table 2 Measured sea identified harmonics for given periods (hours, h): amplitude (A) and time-shift (φ)
Table 3 Observation points’ identified harmonics at distances (m) from the coast, for given periods (hours, h): amplitude (A) and time-shift (φ)
Table 4 Calibrated by numerical model at distances (m) from the coast, for given periods (hours, h): amplitude attenuation (A/A0) and time-shift (\(\omega {t}_{s}\))

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goyetche, T., Pool, M., Carrera, J. et al. Using the tidal method to develop a conceptual model and for hydraulic characterization at the Argentona research site, NE Spain. Hydrogeol J 31, 2099–2114 (2023). https://doi.org/10.1007/s10040-023-02730-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02730-6

Keywords

Navigation