Skip to main content

Advertisement

Log in

Identification of groundwater recharge and flow processes inferred from stable water isotopes and hydraulic data in Bilate River watershed, Ethiopia

Identificación de procesos de recarga y flujo de aguas subterráneas deducidos a partir de isótopos estables del agua y datos hidráulicos en la cuenca del río Bilate, Etiopía

利用稳定水同位素和水力数据推断埃塞俄比亚Bilate河流域识别地下水补给和流动过程

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The stable water isotopes can reflect the locations of recharge sources of groundwater. δ18O and δ2H composition reflect the hydrological mixing at land surface and the origin of moisture at the time of precipitation and infiltration; therefore, understanding the spatial variability in groundwater recharge and the flow paths is significant for the effective management of aquifers. This study investigates the groundwater recharge sources and groundwater flow paths using the stable water isotopes (δ18O and δ2H) and measured groundwater levels in the Bilate River watershed, Ethiopia. The isotopic ranges in the groundwater samples are more similar to precipitation than river water. The groundwater isotopes are distributed close to the meteoric water line of the watershed. Mass balance analysis of the stable water isotopic characteristics also shows that local rainfall is the dominant recharge source for the groundwater. The groundwater isotopes and static-water-level data analysis indicate that the watershed groundwater is mainly recharged by rainfall in the highlands during abundant precipitation. However, the groundwater in the northeast and east of the watershed shows high enrichment resembling surface-water isotope content, and could be better associated with the mixture of groundwater and surface water due to the effect of lake water intrusion at the watershed boundary. The isotopic signature of the watershed, along with the hydraulic flow pattern, identified four recharge mechanisms: recharge by local rainfall only, recharge at higher altitudes, recharge by local rainfall and surface flows, and recharge of regional deep aquifers by rainfall and interaction with open water.

Resumen

Los isótopos estables del agua pueden ser un indicador de la ubicación de las fuentes de recarga de las aguas subterráneas. La composición δ18O y δ2H es un reflejo de la mezcla hidrológica en la superficie terrestre y del origen de la humedad en el momento de la precipitación y la infiltración. Por lo tanto, la comprensión de la variabilidad espacial en la recarga de las aguas subterráneas y las vías de flujo es importante para la gestión eficiente de los acuíferos. Este estudio investiga las fuentes de recarga de las aguas subterráneas y las trayectorias de flujo de las aguas subterráneas utilizando los isótopos estables del agua (δ18O y δ2H) y los niveles medidos de las aguas subterráneas en la cuenca del río Bilate, Etiopía. Los rangos isotópicos de las muestras de aguas subterráneas se asemejan más al agua de precipitación que al agua de río. Los isótopos de las aguas subterráneas se distribuyen cerca de la línea de agua meteórica de la cuenca. El análisis del balance de masas de las características isotópicas estables del agua también muestra que las precipitaciones locales son la fuente de recarga dominante de las aguas subterráneas. Los isótopos de las aguas subterráneas y el análisis de los datos estáticos del nivel del agua indican que las aguas subterráneas de la cuenca se recargan principalmente por las precipitaciones en las tierras altas durante los períodos de precipitaciones abundantes. Sin embargo, las aguas subterráneas del noreste y este de la cuenca muestran un alto enriquecimiento que se asemeja al contenido isotópico de las aguas superficiales, y podría asociarse mejor con la mezcla de aguas subterráneas y superficiales debido al efecto de la intrusión lacustre en el límite de la cuenca. La firma isotópica de la cuenca, junto con el patrón de flujo hidráulico, identificó cuatro mecanismos de recarga: recarga por precipitaciones locales únicamente, recarga a mayor altitud, recarga por precipitaciones locales y flujos superficiales, y recarga de acuíferos profundos regionales por precipitaciones e interacción con aguas superficiales.

摘要

稳定的水同位素可以反映地下水补给源的位置。δ18O 和 δ2H 的组成反映了地表的水文混合和降水和入渗时水汽的起源。因此,了解地下水补给和流动路径的空间变异性对于有效管理含水层至关重要。本研究利用稳定的水同位素(δ18O 和 δ2H)和在埃塞俄比亚的Bilate河流域测量的地下水位,来研究地下水补给源和地下水流动路径。地下水样品中同位素的范围更接近降水而不是河水。地下水同位素分布接近流域的降水线。稳定的水同位素特征的质量平衡分析还表明,局部降水是地下水的主要补给源。地下水同位素和静水位数据分析表明,在充沛降水期间,高原的降水是流域地下水主要的补给源。然而,流域东北部和东部的地下水显示出较高的富集,类似于地表水同位素含量,并且可能更好地与地下水和地表水混合相关,这是由于流域边界处湖泊入侵的影响。流域的同位素特征以及水力流动模式指出了四种补给机制:仅由局部降水补给、高海拔处补给、局部降水和地表径流补给以及由降水和开放水体交互作用补给区域深层含水层。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data that support the findings of this study may be provided by the corresponding author when requested. The authors also confirm that the data supporting the findings of this study are available within the article.

References

  • Aemisegger F, Sturm P, Graf P, Sodemann H, Pfahl S, Knohl A, Wernli H (2012) Measuring variations of δ18O and δ2H in atmospheric water vapour using two commercial laser-based spectrometers: an instrument characterisation study. Atmos Measure Tech 5(7):1491–1511

    Article  Google Scholar 

  • Alemayehu T (2006) Groundwater occurrence in Ethiopia. Addis Ababa University, Addis Ababa, Ethiopia, 111 pp

  • Alemayehu T, Kebede S, Liu L, Nedaw D (2016) Groundwater recharge under changing landuses and climate variability: the case of Baro-Akobo River Basin, Ethiopia. J Environ Earth Sci 6(1):78–95

    Google Scholar 

  • Assa BG, Bhowmick A, Cholo BE (2023) Modeling nitrogen balance for pre-assessment of surface and groundwater nitrate (NO3-–N) contamination from N–fertilizer application loss: a case of the Bilate downstream watershed cropland. Water Air Soil Pollut 234(2):105

    Article  Google Scholar 

  • Ayenew T, Demlie M, Wohnlich S (2008) Hydrogeological framework and occurrence of groundwater in the Ethiopian aquifers. J Afr Earth Sci 52(3):97–113

    Article  Google Scholar 

  • Barbieri M (2019) Isotopes in hydrology and hydrogeology. Water 11(2):291

    Article  Google Scholar 

  • Bedaso ZK, DeLuca NM, Levin NE, Zaitchik BF, Waugh DW, Wu SY, Harman CJ, Shanko D (2020) Spatial and temporal variation in the isotopic composition of Ethiopian precipitation. J Hydrol 585:124364

    Article  Google Scholar 

  • Belachew DL, Leavesley G, David O, Patterson D, Aggarwal P, Araguas L, Terzer S, Carlson J (2016) IAEA isotope enabled coupled catchment–lake water balance model, IWBMIso: description and validation. Isot Environ Health Stud. https://doi.org/10.1080/10256016.2015.1113959

  • Bretzler A, Osenbrück K, Gloaguen R, Ruprecht JS, Kebede S, Stadler S (2011) Groundwater origin and flow dynamics in active rift systems: a multi-isotope approach in the Main Ethiopian Rift. J Hydrol 402(3–4):274–289

    Article  Google Scholar 

  • Coplen TB (1994) Reporting of stable hydrogen, carbon, and oxygen isotopic abundances (technical report). Pure Appl Chem 66(2):273–276

    Article  Google Scholar 

  • Demlie M, Wohnlich S, Wisotzky F, Gizaw B (2007) Groundwater recharge, flow and hydrogeochemical evolution in a complex volcanic aquifer system, Central Ethiopia. Hydrogeol J 15(6):1169–1181

    Article  Google Scholar 

  • Deshpande RD, Bhattacharya SK, Jani RA, Gupta SK (2003) Distribution of oxygen and hydrogen isotopes in shallow groundwaters from southern India: influence of a dual monsoon system. J Hydrol 271:226–239

    Article  Google Scholar 

  • FAO (1998) The digital soil and terrain (SOTER) database and maps of North East Africa. Land and water digital media series 2. FAO, Rome

  • Fetter CW (2001) Applied hydrogeology, 4th edn. Prentice-Hall, Upper Saddle River, NJ

  • Gebere A, Kawo NS, Karuppannan S, Hordofa AT, Paron P (2020) Numerical modeling of groundwater flow system in the Modjo River catchment, Central Ethiopia. Model Earth Syst Environ 7:2501–2515

  • Geleta AD (2012) Hydrogeochemical and isotope hydrology in investigating groundwater recharge and flow processes, South Afar eastern Ethiopia. MSc Thesis, Addis Ababa University, Addis Ababa, Ethiopia

  • Gennoro SL (2009) Integrated hydrogeological investigation of upper Bilate River catchment: southwestern escarpment of Main Ethiopian Rift. MSc Thesis, Addis Ababa University, Addis Ababa, Ethiopia

  • Gibson JJ, Edwards TWD (2002) Regional surface water balance and evaporation transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob Biogeochem Cycl 16:25–38

    Article  Google Scholar 

  • Gibrilla A, Fianko JR, Ganyaglo S, Adomako D, Stigter TY, Salifu M, Zakaria N (2022) Understanding recharge mechanisms and surface water contribution to groundwater in granitic aquifers, Ghana: insights from stable isotopes of δ2H and δ18O. J Afr Earth Sci 192:104567

    Article  Google Scholar 

  • Gintamo TT (2015) Ground water potential evaluation based on integrated GIS and remote sensing techniques, in bilate River Catchment: South Rift Valley of Ethiopia. ASRJETS 10(1):85–120

    Google Scholar 

  • Glynn PD, Plummer LN (2005) Geochemistry and the understanding of ground-water systems. Hydrogeol J 13(1):263–287

    Article  Google Scholar 

  • González-Trinidad J, Pacheco-Guerrero A, Júnez-Ferreira H, Bautista-Capetillo C, Hernández-Antonio A (2017) Identifying groundwater recharge sites through environmental stable isotopes in an alluvial aquifer. Water (Switzerland) 9(8):1–10. https://doi.org/10.3390/w9080569

  • Haji M, Wang D, Li L, Qin D, Guo Y (2018) Geochemical evolution of fluoride and implication for F−enrichment in groundwater: example from the Bilate River basin of southern Main Ethiopian Rift. Water 10(12):1799

    Article  Google Scholar 

  • Hunt RJ, Coplen TB, Haas NL, Saad DA, Borchardt MA (2005) Investigating surface water–well interaction using stable isotope ratios of water. J Hydrol 302(1–4):154–172

  • Hussen SS (2015) The effect of land use land cover change on the hydrology of the Bilate watershed, southern Rift Valley basin of Ethiopia. MSc Thesis, Arba Minch University, Arba Minch, Ethiopia

  • IAEA (2024) Global Network of Isotopes in Precipitation. The GNIP Database. http://isohis.iaea.org/

  • International Atomic Energy Agency (IAEA) (1983) Guidebook on nuclear techniques in hydrology. IAEA Technical Report Series no. 91, IAEA, Vienna, Austria

  • Kahsay KD, Pingale SM, Hatiye SD (2018) Impact of climate change on groundwater recharge and base flow in the sub-catchment of Tekeze basin, Ethiopia. Groundw Sustain Dev 6:121–133

    Article  Google Scholar 

  • Kanduč T, Grassa F, McIntosh J, Stibilj V, Ulrich-Supovec M, Supovec I, Jamnikar S (2014) A geochemical and stable isotope investigation of groundwater/surface-water interactions in the Velenje Basin, Slovenia. Hydrogeol J 22(4):971–984

    Article  Google Scholar 

  • Kebede S (2012) Groundwater in Ethiopia: features, numbers and opportunities. Springer Science & Business Media

  • Kebede S (2013). Groundwater occurrence in regions and basins. In: Groundwater in Ethiopia. Springer, Heidelberg, Germany, pp 15–121

    Chapter  Google Scholar 

  • Kebede BZ (2017) Evaluation of water availability under changing the climate in the Bilate catchment. MSc Thesis, Arbaminch University, Arbaminch, Ethiopia

  • Kebede S, Travi Y (2012) Origin of the δ18O and δ2H composition of meteoric waters in Ethiopia. Quat Int 257:4–12

    Article  Google Scholar 

  • Kebede S, Abdalla O, Sefelnasr A, Tindimugaya C, Mustafa O (2017) Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence. Hydrogeol J 25(3):707–726

    Article  Google Scholar 

  • Koeniger P, Gaj M, Beyer M, Himmelsbach T (2016) Review on soil water isotope-based groundwater recharge estimations. Hydrol Process 30(16):2817–2834

    Article  Google Scholar 

  • Krishan G, Kumar B, Sudarsan N, Rao MS, Ghosh NC, Taloor AK, Vasisht R (2021) Isotopes (δ18O, δD and 3H) variations in groundwater with emphasis on salinization in the state of Punjab, India. Sci Total Environ 789:148051

    Article  Google Scholar 

  • Laelago D, Tekleab S, Dananto M (2020) Modeling long-term water allocation and analysis of alternative strategic scenarios in the catchment area of Bilate River, Rift Valley Lakes Basin, Ethiopia. Ethiop J Water Sci Technol 3:73–93

    Article  Google Scholar 

  • Li C, Liu T, Xu S, Gao X, Wang Y (2016) Groundwater salinization in shallow aquifers adjacent to a low-altitude inland salt lake: a case study at Yuncheng Basin, northern China. Environ Earth Sci 75:1–14

    Google Scholar 

  • Liu BM, Collick AS, Zeleke G, Adgo E, Easton ZM, Steenhuis TS (2008) Rainfall-discharge relationships for a monsoonal climate in the Ethiopian Highlands. Hydrol Proc 22(7):1059–1067

    Article  Google Scholar 

  • Mechal A, Wagner T, Birk S (2015) Regional studies recharge variability and sensitivity to climate: the example of Gidabo River basin, Main Ethiopian Rift. J Hydrol 4:644–660

    Google Scholar 

  • Minissale A, Corti G, Tassi F, Darrah TH, Vaselli O, Montanari D, Yirgu ES, Teclu A (2017) Geothermal potential and origin of natural thermal fluids in the northern Lake Abaya area, Main Ethiopian Rift, East Africa. J Volcanol Geotherm Res 336:1–18

    Article  Google Scholar 

  • Molla DD, Tegaye TA, Fletcher CG (2019) Simulated surface and shallow groundwater resources in the Abaya-Chamo Lake basin, Ethiopia using spatially-distributed water balance model. J Hydrol 24:100615

    Google Scholar 

  • Naicker S (2012a) Conventional hydrogeological, hydrochemical and environmental isotope study of the Sandspruit River catchment, Berg River Basin. South Africa. PhD Thesis

  • Naicker S (2012b) Conventional hydrogeological, hydrochemical and environmental isotope study of the Sandspruit River catchment, Berg River Basin, South Africa. PhD Thesis

  • Nannawo AS, Lohani TK, Eshete AA (2022) Groundwater recharge evaluation due to climate change using WetSpass-M distributed hydrological model in Bilate river basin of Ethiopia. Groundw Sustain Dev 19:100860

    Article  Google Scholar 

  • O Dochartaigh BE (2021) User Guide version 1.2: Africa groundwater atlas country hydrogeology maps. British Geological Survey, Keyworth, England

  • Orlowski N, Kraft P, Pferdmenges J, Breuer L (2016) Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany. Hydrol Earth Syst Sci 20(9):3873

    Article  Google Scholar 

  • Price RM, Swart PK (2006) Geochemical indicators of groundwater recharge in the surficial aquifer system, Everglades National Park, Florida, USA. Geol Soc Am Spec Pap 404:251–266

    Google Scholar 

  • Price RM, Swart PK, Willoughby HE (2008) Seasonal and spatial variation in the stable isotopic composition (δ18O and δ2H) of precipitation in South Florida. J Hydrol 358(3–4):193–205

    Article  Google Scholar 

  • Schilling OS, Parajuli A, Tremblay Otis C, Müller TU, Antolinez Quijano W, Tremblay Y, Brennwald MS, Nadeau DF, Jutras S, Kipfer R, Therrien R (2021) Quantifying groundwater recharge dynamics and unsaturated zone processes in snow-dominated catchments via on-site dissolved gas analysis. Water Resour Res 57(2):e2020WR028479

    Article  Google Scholar 

  • Shamsuddin MKN, Sulaiman WNA, Ramli MF, Mohd Kusin F, Samuding K (2018) Assessments of seasonal groundwater recharge and discharge using environmental stable isotopes at lower Muda River basin, Malaysia. Appl Water Sci 8(5):120. https://doi.org/10.1007/s13201-018-0767-x

    Article  Google Scholar 

  • Schotterer U, Oldfield F, Fröhlich K (1996) GNIP: Global network for isotopes in precipitation. IAEA, Vienna

  • Song X, Liu X, Xia J, Yu J, Tang C (2006) A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin. Sci China Ser D Earth Sci 49(12):1299–1310

    Article  Google Scholar 

  • Stadnyk TA, Delavau C, Kouwen N, Edwards TWD (2013) Towards hydrological model calibration and validation: simulation of stable water isotopes using the isoWATFLOOD model. Hydrol Process 27:3791–3810

    Article  Google Scholar 

  • Tajabadi M, Zare M, Chitsazan M (2018) The hydrogeochemical and isotopic investigations of the two-layered Shiraz aquifer in the northwest of Maharlou saline lake, south of Iran. J Afr Earth Sci 139:241–253

    Article  Google Scholar 

  • Thiemann S, Förch G (2004) Water resources assessment in the Bilate River catchment: precipitation variability. Proc. Lake Abaya Res Symposium 2004, vol 4, pp 73–78. https://www.researchgate.net/publication/238681859. Accessed August 2023

  • Tigabu TB, Wagner PD, Hörmann G, Fohrer N (2020) Modeling the spatio-temporal flow dynamics of groundwater-surface water interactions of the Lake Tana Basin, upper Blue Nile. Ethiopia Hydrol Res 51(6):1537–1559

    Article  Google Scholar 

  • Vandenschrick G, van Wesemael B, Frot E, Pulido-Bosch A, Molina L, Stiévenard M, Souchez R (2002) Using stable isotope analysis (δ2H and δ18O) to characterise the regional hydrology of the Sierra de Gador, South East Spain. J Hydrol 265:43–55

    Article  Google Scholar 

  • Wagesho N, Jain MK, Goel NK (2013) Effect of climate change on runoff generation: application to Rift Valley lakes basin of Ethiopia. J Hydrol Eng 18(8):1048–1063

    Article  Google Scholar 

  • Wan H, Liu W (2016) An isotope study (δ18O and δ2H) of water movements on the Loess Plateau of China in arid and semiarid climates. Ecol Eng 93:226–233

    Article  Google Scholar 

  • West AG, February EC, Bowen GJ (2014) Spatial analysis of hydrogen and oxygen stable isotopes (“isoscapes”) in ground water and tap water across South Africa. J Geochem Explor 145:213–222

    Article  Google Scholar 

  • Winter J, Harvey O, Lehn F, William MA (1998). Ground water and surface water a single resource. US Geol Surv Circ 1139

  • Wodaje GG, Asfaw ZE, Denboba MA (2021) Statistical downscaling (Delta method) of precipitation and temperature for Bilate watershed, Ethiopia. Int J Water Resour Environ Eng 13(1):20–29

    Google Scholar 

  • Woldemariyam F, Ayenew T (2016) Application of hydrochemical and isotopic techniques to understand groundwater recharge and flow systems in the Dawa River basin, southern Ethiopia. Environ Earth Sci 75:1–17

    Article  Google Scholar 

  • Yang Y, Xiao H, Qin Z, Zou S (2013) Hydrogen and oxygen isotopic records in monthly scales variations of hydrological characteristics in the different landscape zones of alpine cold regions. J Hydrol 499:124–131

    Article  Google Scholar 

  • Yapiyev V, Rossi PM, Ala-Aho P, Marttila H (2023) Stable water isotopes as an indicator of surface water intrusion in shallow aquifer wells: a cold climate perspective. Water Resour Res 59(2):e2022WR033056

    Article  Google Scholar 

  • Yurtsever Y, Arguas L (1993) Environmental isotopes in hydrology: an overview of the IAEA activities, experiences, and prospects. In: Tracers in hydrology. IAHS. Publ. 215, IAHS, Wallingford, England, pp 3–20

  • Zhang B, Song X, Zhang Y, Ma Y, Tang C, Yang L, Wang ZL (2016) The interaction between surface water and groundwater and its effect on water quality in the second Songhua River basin, Northeast China. J Earth Syst Sci 125(7):1495–1507

    Article  Google Scholar 

  • Zhao B, Li Z, Li P, Cheng Y, Gao B (2020) Effects of ecological construction on the transformation of different water types on Loess Plateau, China. Ecol Eng 144:105642

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Arba Minch University for data collection and the National Meteorological Agency and the Ministry of Water Resources for providing the meteorological and hydrological data for this research work.

Funding

The authors acknowledge Arba Minch University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bisrat Elias Cholo.

Ethics declarations

Confict of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 1236 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cholo, B.E., Tolossa, J.G. Identification of groundwater recharge and flow processes inferred from stable water isotopes and hydraulic data in Bilate River watershed, Ethiopia. Hydrogeol J 31, 2307–2321 (2023). https://doi.org/10.1007/s10040-023-02698-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02698-3

Keywords

Navigation