Skip to main content

Advertisement

Log in

Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence

Interaction des eaux de surface et des eaux souterraines dans le bassin du Nil: données isotopiques et piézométriques

Interacción del agua superficial y subterránea en la cuenca del Nilo: evidencias piezométricas e isotópicas

尼罗河流域地表水和地下水相互作用:同位素和压力水面证据

Interação entre águas superficiais e subterrâneas na bacia do Rio Nilo; evidencia isotópica e piezométrica

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Past discussions around water-resources management and development in the River Nile basin disregard groundwater resources from the equation. There is an increasing interest around factoring the groundwater resources as an integral part of the Nile Basin water resources. This is hampered by knowledge gap regarding the groundwater resources dynamics (recharge, storage, flow, quality, surface-water/groundwater interaction) at basin scale. This report provides a comprehensive analysis of the state of surface-water/groundwater interaction from the headwater to the Nile Delta region. Piezometric and isotopic (δ18O, δ2H) evidence reveal that the Nile changes from a gaining stream in the headwater regions to mostly a loosing stream in the arid lowlands of Sudan and Egypt. Specific zones of Nile water leakage to the adjacent aquifers is mapped using the two sources of evidence. Up to 50% of the surface-water flow in the equatorial region of the Nile comes from groundwater as base flow. The evidence also shows that the natural direction and rate of surface-water/groundwater interaction is largely perturbed by human activities (diversion, dam construction) particularly downstream of the Aswan High Dam in Egypt. The decrease in discharge of the Nile River along its course is attributed to leakage to the aquifers as well as to evaporative water loss from the river channel. The surface-water/groundwater interaction occurring along the Nile River and its sensitivity to infrastructure development calls for management strategies that account groundwater as an integral part of the Nile Basin resources.

Résumé

Les discussions passées sur la gestion et le développement des ressources en eau dans le bassin du Nil n’introduisent pas dans l’équation les ressources en eau souterraine. Il y a un intérêt croissant pour intégrer les ressources en eau à part entière dans les ressources en eau du bassin du Nil. Le manque de connaissances concernant la dynamique des ressources en eau souterraine (recharge, stockage, écoulement, qualité, interaction entre les eaux de surface et les eaux souterraines) à l’échelle du bassin freine le développement. Cet article fournit une analyse complète de l’état de l’interaction entre les eaux de surface et les eaux souterraines de la tête de bassin à la région du delta du Nil. Les données piézométriques et isotopiques ((δ18O, δ2H) mettent en évidence que le Nil passe d’un état de cours d’eau drainant dans les régions de tête de bassin à un état de cours d’eau drainé principalement dans les zones basses arides du Soudan et de l’Egypte. Des zones spécifiques d’infiltration d’eau vers les aquifères adjacents sont cartographiées à l’aide de deux sources de données probantes. Jusqu’à 50% du débit d’eau de surface dans la région équatoriale du Nil provient des eaux souterraines, constituant le débit de base. Les données montrent également que la direction naturelle des écoulements et des taux d’échange dans les interactions entre les eaux de surface et les eaux souterraines sont en grande partie perturbées par les activités humaines (dérivation, construction de barrages) particulièrement en aval du Haut Barrage d’Assouan en Egypte. La diminution du débit du Nil le long de son cours est attribuée à des infiltrations vers les aquifères ainsi qu’à la perte d’eau par évaporation à partir du lit du fleuve. Les interactions entre les eaux de surface et les eaux souterraines qui se produisent le long du Nil et leur sensibilité au développement d’infrastructure nécessitent des stratégies de gestion qui prennent en considération les eaux souterraines en tant que partie intégrante des ressources en eau du bassin du Nil.

Resumen

Las discusiones pasadas sobre la gestión y el desarrollo de los recursos hídricos en la cuenca del río Nilo desprecian los recursos hídricos subterráneos de la ecuación. Existe un creciente interés por la influencia de los recursos hídricos subterráneos como parte integral de los recursos hídricos de la Cuenca del Nilo. Esto se ve obstaculizado por la falta de conocimientos sobre la dinámica de los recursos hídricos subterráneos (recarga, almacenamiento, flujo, calidad, interacción agua superficial / agua subterránea) a escala de cuenca. Este artículo ofrece un análisis exhaustivo del estado de la interacción agua de superficie / agua subterránea desde las cabeceras hasta la región del delta del Nilo. Las evidencias piezométricas e isotópicas (δ18O, δ2H) revelan que el Nilo cambia de una corriente ganadora en las regiones de cabeceras a perdedora en la mayor parte de las tierras bajas áridas de Sudán y Egipto. Las zonas específicas de la filtración del agua del Nilo hacia los acuíferos adyacentes se mapean utilizando dos fuentes de evidencia. Hasta el 50% del flujo superficial de agua en la región ecuatorial del Nilo proviene del agua subterránea como flujo base. La evidencia también muestra que la dirección natural y la tasa de interacción agua de superficie / agua subterránea está en gran medida perturbada por las actividades humanas (desvío, construcción de presas) particularmente aguas abajo de la presa de Aswan en Egipto. La disminución en la descarga del río Nilo a lo largo de su curso se atribuye a la filtración hacia los acuíferos, así como a la pérdida de agua por evaporación del canal del río. La interacción agua de superficie / agua subterránea que se produce a lo largo del río Nilo y su sensibilidad al desarrollo de infraestructuras requiere estrategias de manejo que consideren el agua subterránea como una parte integral de los recursos de la Cuenca del Nilo.

摘要

过去有关尼罗河流域的论述及水资源管理和开发忽视了地下水资源这一部分。把地下水资源作为尼罗河流域水资源不可分割的一部分越来越得到了人们的重视。但由于缺乏流域尺度上对地下水资源动力学(补给量、储存量、水流量、质量、地表水/地下水相互作用)方面的了解而受到阻碍。本文综合分析了河流源头到尼罗河三角洲地区地表水/地下水相互作用的状态。压力水面和同位素(δ18O和 δ2H)证据显示,尼罗河在河头地区为潜水补给河,而到苏丹和埃及的干旱低地通常变为渗失河。利用两个证据来源绘出了尼罗河河水渗流到毗邻含水层的特定区域图。在赤道地区,多达50%的尼罗河地表水流来自作为基流的地下水。证据还显示,地表水/地下水相互作用的自然方向和强度很大程度上受到人类活动的影响(引水及大坝建设),特别是受到下游阿斯旺水坝的影响。尼罗河沿河道的排泄量减少主要是因为渗漏至含水层以及河道的蒸发损失。沿尼罗河出现的地表水/地下水相互作用及其对基础设施建设的敏感性迫切需要采纳新的管理策略,即把地下水作为尼罗河水资源不可分割的一部分。

Resumo

Discussões passadas sobre a gestão dos recursos hídricos e desenvolvimento na bacia do Rio Nilo desconsideraram os recursos hídricos subterrâneos da equação. Existe um interesse crescente sobre consignar os recursos hídricos subterrâneos como uma parte integrante dos recursos hídricos da Bacia do Nilo. Isso é dificultado pela falta de conhecimento sobre a dinâmica dos recursos hídricos subterrâneos (recarga, armazenamento, escoamento, qualidade, interação águas superficiais/subterrâneas) na escala da bacia. Esse artigo apresenta uma análise abrangente do estado da interação entre águas superficiais/subterrâneas da cabeceira a região do delta do Nilo. Evidencias piezométricas e isotópicas (δ18O, δ2H) revelaram que o Nilo muda de uma corrente de ganho em suas cabeceiras para praticamente correntes de perda nas planícies áridas do Sudão e do Egito. Zonas específicas de infiltração das águas do Nilo aos aquíferos adjacentes são mapeadas usando as duas fontes de evidencia. Mais de 50% do escoamento das águas superficiais da região equatorial do Nilo vem das águas subterrâneas como escoamento de base. A evidencia também mostra que a direção natural e taxa de interação entre as águas superficiais/subterrâneas é amplamente perturbada por atividades humanas (diversões, construções de barragens) particularmente a montante da barragem Aswan High no Egito. A diminuição da descarga do Rio Nilo ao longo do seu curso é atribuída à infiltração aos aquíferos como para perdas evaporativas pelo canal fluvial. A interação das águas superficiais/subterrâneas ocorrendo ao longo do Rio Nilo e sua sensitividade a desenvolvimentos de infraestrutura clamam por estratégias de gestão que considerem as águas subterrâneas como uma parte integrante dos recursos da Bacia do Nilo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdalla O (2006) Aquifer systems in Kordofan, Sudan: subsurface lithological model. S Afr J Geol 109:445–458

    Article  Google Scholar 

  • Abdalla O (2008) Groundwater discharge mechanism in semi-arid regions and the role of evapotranspiration. Hydrol Process 22:2993–3009

    Article  Google Scholar 

  • Abdalla O (2009) Groundwater recharge/discharge in semi-arid regions interpreted from isotope and chloride concentrations in north White Nile Rift, Sudan. Hydrogeol J 17:679–692

    Article  Google Scholar 

  • Adamson DA, Gasse F, Street FA, Williams MAJ (1980) Late Quaternary history of the Nile. Nature 288:50–55

    Article  Google Scholar 

  • Allan JA (2009) Nile basin asymmetries: a closed fresh water resource, soil water potential, the political economy and Nile transboundary hydropolitics. Monogr Biol. doi:10.1007/978-1-4020-9726-3_35

    Google Scholar 

  • Altorkomani GF (1999) The geomorphology of Tushka and development potentialities. Egypt Geographic Soc N4:218

    Google Scholar 

  • Aly AI, Froehlich K, Nada A, Awad M, Hamza M, Salem WM (1993) Study of environmental isotope distribution in the Aswan High Dam Lake (Egypt) for estimation of evaporation of lake water and its recharge to adjacent groundwater. Environ Geochem Health 15:37–49

    Article  Google Scholar 

  • Appelgren B, Klohn W, Alam U (2000) Water and agriculture in the Nile basin. Nile Basin Initiative Report to ICCON background paper prepared by FAO, Rome, 69 pp

  • Attia FAR, Allam MN, Amer AW (1986) A hydrologic budget analysis for the Nile Valley in Egypt. Groundwater 24:453–459

    Article  Google Scholar 

  • Awad MA, Belaey N, Aly AIM, El-Nour FA (1990) Deuterium, oxygen-18 and salt content of drinking water sources in Cairo. Isotopenpraxis 26:566–569

    Google Scholar 

  • Awad MA, Hamza MS, Atwa SM, Sallouma MK (1996) Isotopic and hydrogeochemical evaluation of groundwater at the Qusier Safaga area, Eastern Desert, Egypt. Environ Geochem Health 18:47–56

    Article  Google Scholar 

  • Awad M, El Arabi NE, Hamza M (1997) Use of solute chemistry and isotopes to identify sources of groundwater recharge in the Nile Aquifer system, Upper Egypt. Groundwater 35:223–228

    Article  Google Scholar 

  • Balba AM (1979) Evaluation of changes in the Nile water composition resulting from the Aswan High Dam. J Environ Qual 8:153–156

    Article  Google Scholar 

  • Bonsor HC, Mansour MM, MacDonald AM, Hughes AG, Hipkin RG, Bedada T (2010) Interpretation of GRACE data of the Nile Basin using a groundwater recharge model. Hydrol Earth Syst Sci 7:4501–4533

    Article  Google Scholar 

  • Civita M, de Vivo B, Pierattini D (1975) Lineamenti idrogeologici e caratteristiche delle acque sotterranee della provincia di Khartoum (Sudan) [Lineaments and hydrogeological characteristics of the groundwater of the province of Khartoum (Sudan)]. Industria Mineraria 26:594–612

    Google Scholar 

  • Clark I, Fritz P (1996) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 352 pp

  • Conway D, Hulme M (1996) The impacts of climate variability and future climate change in the Nile basin on water resources in Egypt. Water Resour Dev 12:261–280

    Article  Google Scholar 

  • Darling WG, Edmunds WM, Kinniburgh D, Kotoub S (1987) Sources of recharge to the Basal Nubian Sandstone Aquifer, Butana Region, Sudan. Isotope Techniques in Water Resources Development. Proceedings of a symposium, Vienna, 30 March–3 April 1987

  • Deyassa G, Kebede S, Ayenew T, Kidane T (2014) Crystalline basement aquifers of Ethiopia: their genesis, classification and aquifer properties. J African Earth Sci 100:191–202

    Article  Google Scholar 

  • Edmunds WM, Darling WG, Kinniburgh DG, Kotoub S, Mahgoub S (1992) Sources of recharge at Abu Delaig, Sudan. J Hydrol 31:1–24

    Article  Google Scholar 

  • Elewa H (2006) Water resources and geomorphological characteristics of Tushka and west of Lake Nasser, Egypt. Hydrogeol J 14:942–954

    Article  Google Scholar 

  • El-Shabrawy GI (2009) Lake Nasser-Nubia. In: Dumont HJ (ed) The Nile. Monographiae Biologicae, vol 89. Springer, Dordrecht, The Netherlands, pp 125–155

    Google Scholar 

  • Eltahir EAB (1996) El Nino and the natural variability in the flow of the Nile River. Water Resour Res 32:131–137

    Article  Google Scholar 

  • FAO (2011) Synthesis report, FAO-Nile Basin Project GCP/INT/945/ITA 2004 to 2009, FAO, Rome

  • Fragaszy S, Closas A (2015) Cultivating the desert: irrigation expansion and groundwater abstraction in Northern State, Sudan. Water Alternatives 9:139–161

    Google Scholar 

  • Geyh MA, Froehlich KB, Verhagen TH (1995) Isotope hydrogeology and water balance assessment near the Nile in Sudan. In: Application of tracers in arid zone hydrology (Proceedings of the Vienna Symposium, August 1994). IAHS Publ. no. 232, IAHS, Wallingford, UK

  • Haggaz YAS, Khairallah MK (1988) Paleohydrology of the Nubian Aquifer North East of the Blue Nile, near Khartoum, Sudan. J Hydrol 99:117–125

    Article  Google Scholar 

  • IAEA (2010) Newsletter of the isotope hydrology section, issue no. 27, August 2010, IAEA, Vienna

  • Kebede (2012) Groundwater in Ethiopia: features, vital numbers and opportunities, Springer Hydrogeology Series, Springer, Berlin, 297 pp

  • Kebede S, Travi Y, Alemayehu T, Ayenew T (2006) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River. Ethiopia Appl Geochem 20:1658–1676

    Article  Google Scholar 

  • Kebede S, Travi S, Rozanski K (2009) The δ18O and δ2H enrichment of Ethiopian Lakes. J Hydrol 365:173–182

    Article  Google Scholar 

  • Kebede S, Admasu G, Travi Y (2011) Estimating ungauged catchment flows from Lake Tana flood plains. J Environ Health Stud 47:73–86

    Google Scholar 

  • Kheir OM (1986) Hydrogeology of Dongola Area, Northern Sudan. Berliner geowissenschaftliche Abhandlungen, no. 74, Reimer, Berlin

  • Kim J, Sultan M (2002) Assessment of long-term hydrologic impacts of Lake Nasser and related irrigation projects in southwestern Egypt. J Hydrol 262:68–83

    Article  Google Scholar 

  • Krabbenhoft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes: 1. the stable isotope mass balance method. Water Resour Res 26:2445–2453

    Google Scholar 

  • Lamb HF, Bates R, Combes P, Marshall M, Umer M, Davies S, Dejene E (2007) Late Pleistocene desiccation of Lake Tana, source of the Blue Nile. Quatern Sci Rev 26:287–299

    Article  Google Scholar 

  • MacAlister C, Pavelic P, Tindimugaya C, Ayenew T, Ibrahim ME, Meguid MA (2012) Overview of groundwater in the Nile River Basin. In: Awulachew SB, Smakhtin V, Molden D, Peden D (eds) The Nile River Basin: water, agriculture, governance and livelihoods. Routledge, Abingdon, UK

  • Mackel R (1974) Dambos: a study of morphodynamic activity on the plateau regions of Zambia. Catena 1:327–365

    Article  Google Scholar 

  • Masiyandima M, Giordno M (2007) Sub-Saharan Africa: opportunistic exploitation. In: The agricultural groundwater revolution: opportunities and threats to development. In: Giordano M, Villholth K (eds) Comprehensive assessment of water management in agriculture, Series 3, CAB, Wallingford, UK

  • Moench M, Burke J, Moench Y (2003) Rethinking the approach to groundwater and food security. Report, FAO, Rome, 62 pp

  • Mohamed YA, Savenije HG, Bastiaanssen WGM, van den Hurk JJM (2006) New lessons on the Sudd hydrology learned from remote sensing and climate modeling. Hydrol Earth Syst Sci 10:507–518

    Article  Google Scholar 

  • Mukwaya C, Tindimugaya C (2012) Isotope and Hydrochemical study of the interconnection between groundwater, wetlands and surface water of the Bugondo Wetland, Lake Kyoga. IAEA project report, Ministry of Water and Environment, Kampala, Uganda

  • Neff BP, Nicholas JR (2005) Uncertainty in the Great Lakes Water Balance. US Geol Surv Sci Invest Rep 2004-5100, 42 pp

  • Niestle A (1993) Hydrologic drought risk modelling for agricultural areas. In: Thorweihe U, Schandalmeier H (eds) Geoscientific research in Northeast Africa: International Conference extended abstracts. Balkema, Rotterdam, The Netherlands, pp 699–704

    Google Scholar 

  • Omer AM (2002) Focus on groundwater in Sudan. Environ Geol 41:972–976

    Article  Google Scholar 

  • Owor M (2010) Groundwater–surface water interactions on deeply weathered surfaces of low relief in the Upper Nile Basin of Uganda, PhD Thesis, University College London, UK

  • Said R (1993) The River Nile: geology, hydrology and utilization. Pergamon, Oxford, 320 pp

  • Sefelnasr A (2007) Development of groundwater flow model for water resources management in the development areas of the Western Desert, Egypt. PhD Thesis, Martin Luther University, Germany

  • Sefelnasr A, Sherif M (2014) Impacts of seawater rise on seawater intrusion in the Nile Delta Aquifer, Egypt. Groundwater 52:264–276

    Article  Google Scholar 

  • Sefelnasr A, Gossel W, Wycisk P (2014) Three-dimensional groundwater flow modeling approach for the groundwater management options for the Dakhla Oasis, Western Desert. Egypt Environ Earth Sci 72:1227–1241

    Article  Google Scholar 

  • Sefelnasr A, Gossel W, Wycisk P (2015) Groundwater management options in an arid environment: the Nubian Sandstone Aquifer System, Eastern Sahara. J Arid Environ 122:46–58

    Article  Google Scholar 

  • Senay GB, Velpuri NM, Bohms S, Demissie Y, Gebremichael M (2014) Understanding the hydrologic sources and sinks in the Nile Basin using multisource climate and remote sensing data sets. Water Resour Res. doi:10.1002/2013WR015231

    Google Scholar 

  • Senden WJMK (1989) Hydrogeological map of the Sudan (maps and explanatory notes). TNO, Delft, The Netherlands, 16 pp, 1 diagram, 3 tables and 2 maps (1:2,000,000, north and south sheet)

  • Setegn SG, Srinivasan R, Dargahi B (2008) Hydrological modelling in the Lake Tana Basin, Ethiopia using SWAT model. Open Hydrol J 2:49–62

    Article  Google Scholar 

  • Shahin M (1988) Hydrology of the Nile Basin. Elsevier, Amsterdam

    Google Scholar 

  • Sherif M, Sefelnasr A, Javadi A (2012) Incorporating the concept of equivalent freshwater head in successive horizontal simulations of seawater intrusion in the Nile Delta aquifer. Egypt J Hydrol 464(465):186–198

    Article  Google Scholar 

  • Shohaib RE, Nada AA, Swailem FM, El-Shafi M (1990) Hydrochemical and environmental isotope investigation in South Western part of Sudan. Isotopenpraxis 26:1–5

    Google Scholar 

  • Sturchio NC, Arehart GB, Sultan M, Sano Y, AboKamar Y, Sayed M (1996) Composition and origin of thermal waters in the Gulf of Suez area, Egypt. Appl Geochem 11:471–479

    Article  Google Scholar 

  • Sultan M, Yan E, Sturchio N, Wagdy A, Abdel-Gelil K, Becker R, Manocha N, Milewski A (2006) Natural discharge: a key to sustainable utilization of fossil groundwater. J Hydrol 335:25–36

    Article  Google Scholar 

  • Sultan M, Metwally S, Milewski A, Becker D, Ahmed M, Sauck W, SolimanF SN, Yan E, Rashed M, Wagdy A, Becker R, Welton B (2011) Modern recharge to fossil aquifers: geochemical, geophysical, and modeling constraints. J Hydrol 403:14–24

    Article  Google Scholar 

  • Sutcliffe JV, Parks YP (1999) The hydrology of the Nile. IAHS Spec. Publ. no. 5. IAHS, Wallingford, UK

  • Tantawy MAS (1992) Isotopic and hydrogeochemical applications to the surface and the groundwater assessments in El Minia district, Egypt. PhD Thesis, El Minia University, Elminia, Egypt

  • Taylor R (2009) Rethinking water scarcity: the role of storage. Trans Am Geophys Union 90:237–238

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1996) Groundwater recharge in the Victoria Nile Basin of East Africa: support for the soil-moisture balance method using stable isotope and flow modelling studies. J Hydrol 180:31–53

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1998) Post-Palaeozoic evolution of weathered land surfaces in Uganda by tectonically controlled deep weathering and stripping. Geomorphology 25:173–192

    Article  Google Scholar 

  • Taylor RG, Howard KWF (1999) The influence of tectonic setting on the hydrological characteristics of deeply weathered terrains: evidence from Uganda. J Hydrol 218:44–71

    Article  Google Scholar 

  • Thorweihe U (1990) Nubian aquifer system. In: Said R (ed) Geology of Egypt. Balkema, Rotterdam, The Netherlands

    Google Scholar 

  • Thorweithe U, Heinl M (2002) Groundwater resources of the Nubian Aquifer System NE-Africa, a synthesis. Observatoire du Sahara et du Sahel, Paris

    Google Scholar 

  • Tindimugaya C (2008) Groundwater flow and storage in weathered crystalline rock aquifer systems of Uganda: evidence from environmental tracers and aquifer responses to hydraulic stress. PhD Thesis, University College London, UK

  • Van Noordwijk M (1984) Ecology textbook for the Sudan. Khartoum University Press, Khartoum, Sudan

  • Van Steenbergen F, Kumsa A, Al-Awlaki N (2015) Understanding political will in groundwater management: comparing Yemen and Ethiopia. Water Alternat 8:774–799

    Google Scholar 

  • Vrbka P, Jacob H, Flolich K, Salih M (1993) Investigation of groundwater recharge sources in northern Sudan by environmental isotopes. J Env Hydrol 1:8–16

    Google Scholar 

  • Williams MAJ, Williams FM (1980) Evolution of the Nile Basin. In: Williams MAJ, Faure H (eds) The Sahara and the Nile: Quaternary environments and prehistoric occupation in Northern Africa. Balkema, Rotterdam, The Netherlands, pp 207–224

    Google Scholar 

  • Woodward JC, Macklin MG, Krom MD, Williams MAJ (2007) The Nile: evolution, Quaternary river environments and material fluxes. In: Guptaeds A (ed) Large rivers: geomorphology and management. Wiley, Chichester, UK

  • Zeitoun M, Allan JA, Mohieldeen Y (2010) Virtual water ‘flows’ of the Nile Basin, 1998–2004: a first approximation and implications for water security. Glob Environ Chang 20:229–242

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the various people that contributed to the publication of this report. The two reviewers and the editor are appreciated for their constructive inputs and comments which have largely improved the quality of this report. The data used in this work include (1) those collected directly by the authors during their research engagement in the region (2) those retrieved from unpublished works and reports produced under the IAEA bilateral or multi lateral projects and (3) those obtained from published works. The inputs of all those who contributed to collection of these data are very much appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Seifu Kebede or Osman Abdalla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kebede, S., Abdalla, O., Sefelnasr, A. et al. Interaction of surface water and groundwater in the Nile River basin: isotopic and piezometric evidence. Hydrogeol J 25, 707–726 (2017). https://doi.org/10.1007/s10040-016-1503-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1503-y

Keywords

Navigation