Skip to main content

Advertisement

Log in

Changes in well water level and rock damage zones in a shallow aquifer before and after local earthquakes

Modifications du niveau de l’eau d’un puits et des zones de déformation rocheuse dans un aquifère superficiel avant et après les tremblements de terre localux

Cambios en el nivel del agua de pozo y en las zonas donde se producen deformaciones de las rocas en un acuífero poco profundo antes y después de terremotos locales

近场地震前后浅层含水层中井水位和岩石损伤带的变化

Mudanças no nível d’água e zonas de danificação de rochas em aquífero raso antes e depois de terremotos locais

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The coseismic response of a well’s water level and the degree of rock damage in response to earthquakes can be quantified and used to understand the mechanism of the response of the aquifer system. The coseismic response of well water levels has been reported to be related to aquifer permeability, and this relationship is influenced by seismic events. Hydraulic parameters of the aquifer were obtained from the coseismic response of the water level in Well X10 in Xinjiang, China, before and after three local earthquakes from December 2016 to August 2020, and were used to estimate the degree of rock damage caused. Results indicated that the hydraulic parameters and primary rock defects (e.g., microcracks and microvoids) changed by varying degrees. It is suggested that the coseismic response of the water level caused by local earthquakes is the result of the coupling between volume and deviator strains. It was concluded that earthquake-induced stress changes in the fracture zone were likely to lead to changes in the rock damage areas and alterations in its multiple elastic parameters, while the changes in the hydraulic parameter were relatively small. Evolution of rock defects was found to depend on initial stress level, initial damage state, and coseismic strain in the aquifer, indicating that the mechanism of the earthquake-induced coseismic response of the water level is complex. These findings contribute to a deeper understanding of the earthquake-induced deformation of an aquifer and the mechanism of the coseismic response of the groundwater.

Résumé

La réponse cosismique du niveau de l’eau d’un puits et le degré de déformation rocheuse en réponse à des séismes peuvent être quantifiés et utilisés pour comprendre le mécanisme de réponse d’un système aquifère. Il a été rapporté que la réponse cosismique des niveaux de l’eau d’un puits est liée à la perméabilité de l’aquifère, et cette relation est influencée par les évènements sismiques. Les paramètres hydrauliques de l’aquifère ont été acquis à partir de la réponse cosismique du niveau de l’eau du puits X10 au XinJiang (Chine), avant et après trois séismes locaux survenus entre décembre 2016 et août 2020 et ont été utilisés pour estimer l’intensité des dommages de la roche en résultant. Les résultats indiquent que les paramètres hydrauliques et les altérations rocheuses primaires (e.g. microfissures et microvides) ont été modifiés à des degrés divers. Il est suggéré que la réponse cosismique du niveau de l’eau causée par des séismes locaux est le résultat d’un couplage entre les contraintes de volume et de déviation. La conclusion est que les modifications des contraintes induites par le séisme dans la zone de fractures semblaient aboutir à des changements dans les zones de déformation et d’altération de la roche pour plusieurs de ses paramètres élastiques, tandis que les modifications des paramètres hydrauliques étaient relativement limitées. On a constaté que l’évolution des désordres dans la roche dépendait du niveau de la contrainte initiale, de l’état initial des désordres et de la tension cosismique dans l’aquifère, ce qui indique que le mécanisme de la réponse cosismique du niveau de l’eau induit par le séisme est complexe. Ces résultats contribuent à une compréhension approfondie des déformations d’un aquifère induites par un séisme et du mécanisme de la réponse cosismique de l’eau souterraine.

Resumen

La respuesta cosísmica del nivel de agua de un pozo y el grado de deformación de la roca en reacción a los terremotos pueden cuantificarse y utilizarse para comprender el mecanismo de esta respuesta en el sistema acuífero. Se ha señalado que la respuesta cosísmica de los niveles de agua de los pozos está relacionada con la permeabilidad del acuífero, y que esta relación se ve influenciada por los eventos sísmicos. Los parámetros hidráulicos del acuífero se obtuvieron a partir de la respuesta cosísmica del nivel de agua en el pozo X10 en Xinjiang, China, antes y después de tres terremotos locales de diciembre de 2016 a agosto de 2020, y se utilizaron para estimar el grado de deformación causado en la roca. Los resultados indicaron que los parámetros hidráulicos y las principales deformaciones de la roca (por ejemplo, microfisuras y microvacíos) cambiaron en distintos grados. Se sugiere que la respuesta cosísmica del nivel del agua causada por terremotos locales es el resultado del acoplamiento entre las deformaciones de volumen y de desviación. Se llegó a la conclusión de que los cambios de tensión inducidos por terremotos en la zona de fractura podían provocar cambios en las zonas de deformación de la roca y alteraciones en sus múltiples parámetros elásticos, mientras que los cambios en el parámetro hidráulico eran relativamente pequeños. Se observó que la evolución de las deformaciones en la roca dependía del nivel de tensión inicial, del estado de deformación inicial y de la deformación cosísmica en el acuífero, lo que indica que el mecanismo de la respuesta cosísmica del nivel de agua inducida por el terremoto es complejo. Estos resultados contribuyen a una comprensión más profunda de la deformación de un acuífero inducida por un terremoto y del mecanismo de la respuesta cosísmica del agua subterránea.

摘要

定量分析地震引起的井水位同震响应和岩石损伤程度变化,有助于了解含水层系统的响应机制。井水位的同震响应与含水层渗透率有关已被报道,而且这种相关性还会受到地震事件的影响。获取了2016年12月至2020年8月的中国新疆X10井观测到的3次近场地震前后含水层的水力参数,估算了地震引起的含水层岩石损伤程度。结果表明,水力参数和岩石损伤变化(如微裂纹和微空隙)发生了不同程度的变化。认为近场地震引起的水位同震响应是体积应变和偏应变耦合的结果。结果表明,地震引起的断裂带应力变化可能导致岩石损伤区域的变化和其岩石弹性参数的变化,而水力参数的变化相对较小。岩石损伤的演化取决于含水层的初始应力水平、初始损伤状态和同震应变,这表明地震引起的水位同震响应机制是复杂的。这些发现有助于更进一步理解地震引起的含水层变形和地下水的同震响应机制。

Resumo

A resposta cosísmica do nível de água de um poço e o grau de dano da rocha em resposta a terremotos podem ser quantificados e usados para entender o mecanismo de resposta do sistema aquífero. A resposta cosísmica dos níveis de água dos poços está relacionada à permeabilidade do aquífero, e essa relação é influenciada por eventos sísmicos. Os parâmetros hidráulicos do aquífero foram obtidos a partir da resposta cosísmica do nível da água no Poço X10 em Xinjiang, China, antes e depois de três terremotos locais de dezembro de 2016 a agosto de 2020, e foram usados para estimar o grau de dano causado à rocha. Os resultados indicaram que os parâmetros hidráulicos e os defeitos primários da rocha (por exemplo, microtrincas e microvazios) mudaram em vários graus. Sugere-se que a resposta cosísmica do nível d’água causada por terremotos locais seja o resultado do acoplamento entre deformações volumétricas e desviadoras. Concluiu-se que as mudanças de tensão induzidas por terremotos na zona de fratura provavelmente levariam a mudanças nas áreas de dano da rocha e alterações em seus múltiplos parâmetros elásticos, enquanto as mudanças no parâmetro hidráulico foram relativamente pequenas. Verificou-se que a evolução dos defeitos da rocha depende do nível de tensão inicial, do estado de dano inicial e da tensão cosísmica no aquífero, indicando que o mecanismo da resposta cosísmica induzida por terremotos do nível da água é complexo. Essas descobertas contribuem para uma compreensão mais profunda da deformação induzida por terremotos de um aquífero e do mecanismo da resposta cosísmica das águas subterrâneas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The information on the earthquakes was obtained from the website of USGS (2020) (links to https://earthquake.usgs.gov/). The original water level and seismic wave data supporting the work presented in this paper are from the monitoring center of the earthquake Agency of the Xinjiang Uygur Autonomous Region. All data are available on request from the corresponding author.

References

  • Aki K, Richards PG (2002) Quantitative seismology. Sausalito 2002:1–700

    Google Scholar 

  • Ben-Zion Y (2008) Collective behavior of earthquakes and faults: continuum-discrete transitions, progressive evolutionary changes, and different dynamic regimes. Rev Geophys 46(4)

  • Beresnev I, Gaul W, Vigil RD (2011) Direct pore-level observation of permeability increase in two-phase flow by shaking. Geophys Res Lett 38(20)

    Article  Google Scholar 

  • Bower DR, Heaton KC (1978) Response of an aquifer near Ottawa to tidal forcing and the Alaskan earthquake of 1964. Can J Earth Sci 15(3):331–340

    Article  Google Scholar 

  • Brace WF, Paulding BW, Scholz C (1966) Dilatancy in the fracture of crystalline rocks. J Geophys Res 71:3939–3953

    Article  Google Scholar 

  • Brodsky EE, Roeloffs E, Woodcock D, Gall I, Manga M (2003) A mechanism for sustained groundwater pressure changes induced by distant earthquakes. J Geophys Res 108(B8):2390

    Google Scholar 

  • Cooper HH, Bredehoeft JD, Papadopulos IS, Bennett RR (1965) The response of well-aquifer systems to seismic waves. J Geophys Res 70(16):3915–3926

    Article  Google Scholar 

  • Doan ML, Brodsky EE, Prioul R, Signer C (2006) Tidal analysis of borehole pressure: a tutorial. University of California

  • Elkhoury JE, Brodsky EE, Agnew DC (2006) Seismic waves increase permeability. Nature 441(7097):1135–1138

    Article  Google Scholar 

  • Ekström G, Nettles M, Dziewonski AM (2012) The global CMT project 2004–2010: centroid-moment tensors for 13,017 earthquakes. Phys Earth Planet Inter 200–201:1–9. https://doi.org/10.1016/j.pepi.2012.04.002

  • Faoro I, Elsworth D, Marone C (2012) Permeability evolution during dynamic stressing of dual permeability media. J Geophys: Solid Earth 117(B1)

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Hamiel Y, Liu Y, Lyakhovsky V, Ben-Zion Y, Lockner D (2004a) A viscoelastic damage model with applications to stable and unstable fracturing. Geophys J Int 159(3):1155–1165

    Article  Google Scholar 

  • Hamiel Y, Lyakhovsky V, Agnon A (2004b) Coupled evolution of damage and porosity in poroelastic media: theory and applications to deformation of porous rocks. Geophys J Int 156(3):701–713

    Article  Google Scholar 

  • Hamiel Y, Lyakhovsky V, Agnon A (2005) Rock dilation, nonlinear deformation, and pore pressure change under shear. Earth Planet Sci Lett 237(3–4):577–589

    Article  Google Scholar 

  • Hamiel Y, Lyakhovsky V, Stanchits S, Dresen G, Ben-Zion Y (2009) Brittle deformation and damage-induced seismic wave anisotropy in rocks. Geophys J Int 178(2):901–909

    Article  Google Scholar 

  • Hart DJ, Wang HF (1995) Laboratory measurements of a complete set of poroelastic moduli for Berea sandstone and Indiana limestone. J Geophys Res 100:17741–17751

    Article  Google Scholar 

  • Hsieh PA, Bredehoeft JD, Farr JM (1987) Determination of aquifer transmissivity from earth tide analysis. Water Resour Res 23(10):1824–1832

    Article  Google Scholar 

  • Johnson PA, Jia X (2005) Nonlinear dynamics, granular media and dynamic earthquake triggering. Nature 437(7060):871–874

    Article  Google Scholar 

  • Jónsson S, Segall P, Pedersen R, Björnsson G (2003) Post-earthquake ground movements correlated to pore-pressure transients. Nature 424(6945):179–183

    Article  Google Scholar 

  • Jacob CE (1940) On the flow of water in an elastic artesian aquifer. EOS Trans Am Geophys Union 21(2):574–586

    Article  Google Scholar 

  • Katz O, Reches ZE (2004) Microfracturing, damage, and failure of brittle granites. J Geophys: Solid Earth 109(B1)

  • King C-Y et al (1999) Earthquake-related water-level changes at 16 closely clustered wells in Tono, Central Japan. J Geophys Res: Solid Earth 104(B6):13073–13082

  • Kinoshita C, Kano Y, Ito H (2015) Shallow crustal permeability enhancement in Central Japan due to the 2011 Tohoku earthquake. Geophys Res Lett 42(3):773–780

  • Lay T, Wallace TC (1995) Modern global seismology. Elsevier, Amsterdam

    Google Scholar 

  • Liu LB, Roeloffs E, Zheng XY (1989) Seismically induced water level fluctuations in the Wali well, Beijing, China. J Geophys Res 94(B7):9453–9462

    Article  Google Scholar 

  • Lockner DA, Stanchits SA (2002a) Relations between drained and undrained moduli in anisotropic poroelasticity. J Geophys Res 107:2353–2351

    Google Scholar 

  • Lockner DA, Stanchits SA (2002b) Undrained poroelastic response of sandstones to deviatoric stress change. J Geophys: Solid Earth 107(B12):ETG 13-1–ETG 13-14

    Article  Google Scholar 

  • Lockner DA, Byerlee JD, Kuksenko V, Ponomarev A, Sidorin A (1991) Quasi-static fault growth and shear fracture energy in granite. Nature 350(6313):39–42

    Article  Google Scholar 

  • Lyakhovsky V, Ben-Zion Y (2008) Scaling relations of earthquakes and aseismic deformation in a damage rheology model. Geophys J Int 172(2):651–662

    Article  Google Scholar 

  • Lyakhovsky V, Ben-Zion Y, Agnon A (1997a) Distributed damage, faulting, and friction. J Geophys Res: Solid Earth 102(B12):27635–27649

    Article  Google Scholar 

  • Lyakhovsky V, Reches ZE, Weinberger R, Scott TE (1997b) Non-linear elastic behaviour of damaged rocks. Geophys J Int 130(1):157–166

    Article  Google Scholar 

  • Lyakhovsky V, Zhu W, Shalev E (2015) Visco-poroelastic damage model for brittle-ductile failure of porous rocks. J Geophys Res: Solid Earth 120(4):2179–2199

    Article  Google Scholar 

  • Lin J, Stein RS (2004) Stress triggering in thrust and subduction earthquakes and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. J Geophys Res 109:B02303. https://doi.org/10.1029/2003JB002607

    Article  Google Scholar 

  • Manga M, Beresnev I, Brodsky EE, Elkhoury JE, Elsworth D, Ingebritsen SE, Mays DC, Wang CY (2012) Changes in permeability caused by transient stresses: field observations, experiments, and mechanisms. Rev Geophys 50(2):RG2004. https://doi.org/10.1029/2011RG000382

    Article  Google Scholar 

  • Matsumoto N, Roeloffs EA (2003) Hydrological response to earthquakes in the Haibara well, central Japan: II, possible mechanism inferred from time-varying hydraulic properties. Geophys J Int 155(3):899–913

    Article  Google Scholar 

  • Okada Y (1992) Internal deformation due to shear and tensile faults in a half-space. Bull Seismol Soc Am 82(2):1018–1040

    Article  Google Scholar 

  • Quilty EG, Roeloffs EA (1997) Water-level changes in response to the 20 December 1994 earthquake near Parkfield, California. Bull Seismol Soc Am 87(2):310–317

    Article  Google Scholar 

  • Shalev E, Kurzon I, Doan M-L, Lyakhovsky V (2016a) Water-level oscillations caused by volumetric and deviatoric dynamic strains. Geophys J Int 204(2):841–851

    Article  Google Scholar 

  • Shalev E, Kurzon I, Doan ML, Lyakhovsky V (2016b) Sustained water-level changes caused by damage and compaction induced by teleseismic earthquakes. J Geophys Res: Solid Earth 121(7):4943–4954

    Article  Google Scholar 

  • Shi Y, Liao X, Zhang D, Liu C-P (2019) Seismic waves could decrease the permeability of the shallow crust. Geophys Res Lett 46(12):6371–6377. https://doi.org/10.1029/2019GL081974

    Article  Google Scholar 

  • Shi Z, Wang G, Manga M, Wang C-Y (2015) Mechanism of co-seismic water level change following four great earthquakes: insights from co-seismic responses throughout the Chinese mainland. Earth Planet Sci Lett 430:66–74

    Article  Google Scholar 

  • Shih DC-F (2009) Storage in confined aquifer: spectral analysis of groundwater responses to seismic Rayleigh waves. J Hydrol 374(1–2):83–91. https://doi.org/10.1016/j.jhydrol.2009.06.002

    Article  Google Scholar 

  • Shih DC-F, Wu Y-M, Chang C-H (2013) Significant coherence for groundwater and Rayleigh waves: evidence in spectral response of groundwater level in Taiwan using 2011 Tohoku earthquake, Japan. J Hydrol 486:57–70. https://doi.org/10.1016/j.jhydrol.2013.01.013

    Article  Google Scholar 

  • Skempton AW (1954) The pore-pressure coefficients A and B. Géotechnique 4(4):143–147

    Article  Google Scholar 

  • Stein S, Wysession M (2009) An introduction to seismology, earthquakes, and earth structure. Wiley, Chichester, UK

    Google Scholar 

  • Sun X, Xiang Y (2019) Heterogeneous permeability changes along a fault zone caused by the Xingwen M5. 7 earthquake in SW China. Geophys Res Lett 46(24):14404–14411

    Article  Google Scholar 

  • Sun X, Shi Z, Xiang Y (2020) Frequency dependence of in situ transmissivity estimation of well-aquifer systems from periodic loadings. Water Resour Res 56(11):e2020WR027536

    Article  Google Scholar 

  • Sun X, Wang G, Yang X (2015) Coseismic response of water level in Changping well, China, to the Mw 9.0 Tohoku earthquake. J Hydrol 531:1028–1039

  • Sun X, Xiang Y, Shi Z (2018) Estimating the hydraulic parameters of a confined aquifer based on the response of groundwater levels to seismic Rayleigh waves. Geophys J Int 213(2):919–930. https://doi.org/10.1093/gji/ggy036

    Article  Google Scholar 

  • Sun X, Xiang Y, Shi Z (2019) Changes in permeability caused by two consecutive earthquakes: insights from the responses of a well-aquifer system to seismic waves. Geophys Res Lett 46(17–18):10367–10374

    Article  Google Scholar 

  • Toda S, Stein RS, Richards-Dinger K, Bozkurt SB (2005) Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. J Geophys Res 110:B05S16. https://doi.org/10.1029/2004JB003415

    Article  Google Scholar 

  • USGS (2020) Earthquake hazards program. US Geological Survey, Reston, VA. https://www.usgs.gov/programs/earthquake-hazards. Accessed 1 December 2020

  • Wakita H (1975) Water wells as possible indicators of tectonic strain. Science 189(4202):553–555

    Article  Google Scholar 

  • Wang C-Y, Barbour AJ (2017) Influence of pore pressure change on coseismic volumetric strain. Earth Planet Sci Lett 475:152–159

    Article  Google Scholar 

  • Wang C-Y, Manga M (2010) Earthquakes and water. In: Lecture notes in earth sciences. Springer, Heidelberg, Germany, 225 pp

  • Wang C-Y, Chia Y, Wang P-L, Dreger D (2009) Role of S waves and love waves in coseismic permeability enhancement. Geophys Res Lett 36(9):(L09404)

    Article  Google Scholar 

  • Wang HF (1997) Effects of deviatoric stress on undrained pore pressure response to fault slip. J Geophys Res: Solid Earth 102(B8):17943–17950

    Article  Google Scholar 

  • Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology, vol 2. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Xiang Y, Sun X, Gao X (2019) Different coseismic groundwater level changes in two adjacent wells in a fault-intersected aquifer system. J Hydrol 578:124123

    Article  Google Scholar 

  • Xue L et al (2013) Continuous permeability measurements record healing inside the Wenchuan earthquake fault zone. Science 340(6140):1555–1559

    Article  Google Scholar 

  • Zoback MD, Byerlee JD (1975) The effect of microcrack dilatancy on the permeability of westerly granite. J Geophys Res 80(5):752–755

    Article  Google Scholar 

  • Zhao D, Zeng Y, Sun X, Mei A (2021) Rock damage and aquifer property estimation from water level fluctuations inwells induced by seismic waves: a case study in X10 well, Xinjiang, China. Shock Vibration 2021:2137978. https://doi.org/10.1155/2021/2137978

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Earthquake Agency of Xinjiang Uygur Autonomous Region for providing the data for this study. The information on the earthquakes was obtained from the website of US Geological Survey (USGS 2020).

Funding

Intelligent and Safe Mining for Coal Resources (Grant No. 52121003) and the 111 Project (Grant No. B18052)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiang.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 2652 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, Y., Peng, S. Changes in well water level and rock damage zones in a shallow aquifer before and after local earthquakes. Hydrogeol J 31, 1937–1951 (2023). https://doi.org/10.1007/s10040-023-02670-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02670-1

Keywords

Navigation