Skip to main content

Advertisement

Log in

Determination of areas vulnerable to pollution in a karstic river basin in Turkey via a decision support system based on DRASTIC, SWAT and isotopes analysis

Détermination des zones vulnérables à la pollution dans un bassin versant karstique en Turquie à partir d’un système d’aide à la décision reposant sur DRASTIC, SWAT et les analyses isotopiques

Determinación de zonas vulnerables a la contaminación en una cuenca kárstica de Turquía mediante un sistema de apoyo en la toma de decisiones basado en DRASTIC, SWAT y análisis de isótopos

基于DRASTIC、SWAT和同位素分析的决策支持系统划定土耳其喀斯特河流域易受污染区

Determinação de áreas vulneráveis à poluição em uma bacia hidrográfica cárstica na Turquia via um sistema de apoio à decisão baseado em DRASTIC, SWAT e análise de isótopos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Determination of areas vulnerable to water pollution in river basins helps to generate appropriate water management protection plans. This study aims to define areas vulnerable to pollutants in a data-scarce karstic river basin in Turkey by using a holistic approach integrating the Soil and Water Assessment Tool (SWAT), the DRASTIC framework, and selected isotopes within a decision support system based on a geographic information system to delineate vulnerable areas. DRASTIC was used to show groundwater vulnerability to pollutants. The concentrations of isotopes 18O, 2H, and 3H in groundwater were used to define the vulnerable areas of the karst region. SWAT was utilized to show watershed vulnerability to pollutants in shallow aquifers. The recharge rate parameter in DRASTIC was obtained from SWAT. This methodological approach was applied to the Yuvacık Dam Basin in Kocaeli, part of the Marmara River Basin, as it is a good example of a karstic watershed. According to this study, each approach provides different vulnerabilities when applied separately. The final map obtained from the integrated approach shows that drinking water supplies in the northeast and northwest parts of the basin are highly vulnerable to pollution. All the karst spring catchments and areas near the basin outlet are highly vulnerable. Moreover, across all water samples taken across the basin, those exhibiting the highest concentrations in nitrate were all found in the areas mapped as highly vulnerable. The methodology was validated by analyzing nitrate concentration in 22 groundwater and surface-water samples.

Résumé

La détermination des zones vulnérables à la pollution de l’eau dans les bassins versants aide à établir des plans de protection adaptés à la gestion de l’eau. Cette étude a pour objectif de définir les zones vulnérables aux polluants dans un bassin versant karstique doté de peu de données en Turquie en utilisant une approche holistique intégrant l’outil SWAT, le schéma DRASTIC, et des isotopes sélectionnés dans un outil d’aide à la décision basé sur un système d’information géographique pour délimiter les zones vulnérables. DRASTIC a été utilisé pour mettre en évidence la vulnérabilité des eaux souterraines aux polluants. Les concentrations des isotopes 18O, 2H, and 3H dans les eaux souterraines ont été utilisées pour définir les zones vulnérables de la région karstique. SWAT a été utilisé pour attester de la vulnérabilité du bassin versant aux polluants dans les aquifères superficiels. Le paramètre du taux de recharge de DRASTIC a été obtenu à partir de SWAT. Cette approche méthodologique a été appliquée au basin du barrage de Yuvacık en Kocaeli, une partie du bassin versant de Marmara, du fait que c’est un bon exemple de bassin versant karstique. Selon cette étude, chaque approche fournit différentes vulnérabilités lorsque appliquée séparément. La carte finale obtenue à partir de l’approche intégrée indique que les secteurs d’approvisionnement en eau potable dans les parties nord-est et nord-ouest du bassin sont fortement vulnérables à la pollution. Tous les captages des sources karstiques et les zones proches de l’exutoire du bassin sont très vulnérables. De plus, parmi tous les échantillons d’eau prélevés dans le bassin, ceux présentant les concentrations les plus élevés en nitrates se trouvent tous dans les zones cartographiées comme très vulnérables. La méthodologie a été validée en analysant la concentration de nitrates dans 22 échantillons d’eau souterraine et d’eau de surface.

Resumen

La determinación de las zonas vulnerables a la contaminación del agua en las cuencas fluviales ayuda a generar planes adecuados de protección de la gestión del agua. Este estudio tiene por objeto definir las zonas vulnerables a los contaminantes en una cuenca fluvial cárstica de Turquía sobre la que se dispone de escasos datos, utilizando un enfoque holístico que integra la Soil and Water Assessment Tool (SWAT), el sistema DRASTIC e isótopos seleccionados en un sistema de apoyo a la toma de decisiones basado en un sistema de información geográfica para delimitar las zonas vulnerables. Se utilizó DRASTIC para mostrar la vulnerabilidad de las aguas subterráneas a los contaminantes. Las concentraciones de isótopos 18O, 2H y 3H en las aguas subterráneas se utilizaron para definir las zonas vulnerables de la región kárstica. Se utilizó SWAT para mostrar la vulnerabilidad de las cuencas a los contaminantes en acuíferos poco profundos. El parámetro de la tasa de recarga en DRASTIC se obtuvo de SWAT. Este enfoque metodológico se aplicó a la cuenca de la presa de Yuvacık en Kocaeli, parte de la cuenca del río Mármara, ya que es un buen ejemplo de cuenca kárstica. Según este estudio, cada enfoque proporciona vulnerabilidades diferentes cuando se aplica por separado. El mapa final obtenido a partir del enfoque integrado muestra que los suministros de agua potable en las partes noreste y noroeste de la cuenca son muy vulnerables a la contaminación. Todas las captaciones de manantiales kársticos y las zonas próximas a la desembocadura de la cuenca son muy vulnerables. Además, en todas las muestras de agua tomadas en la cuenca, las que presentaban las concentraciones más elevadas de nitrato se encontraban en las zonas consideradas altamente vulnerables. La metodología se validó analizando la concentración de nitratos en 22 muestras de aguas subterráneas y superficiales.

摘要

在流域中划定易受水污染区有助于制定适宜的水资源管理保护计划。本研究旨在利用综合方法,将土壤和水资源评估工具(SWAT)、DRASTIC框架和选定的同位素整合到基于地理信息系统的决策支持系统中,以此来确定土耳其数据匮乏的喀斯特河流域中易受污染影响的区域。DRASTIC用于显示地下水易受污染影响的脆弱性。地下水中同位素18O、2H和3H的浓度用于确定喀斯特地区的易受影响区域。SWAT用于显示浅层含水层中流域易受污染影响的脆弱性。DRASTIC中的补给率参数从SWAT中获取。该方法在Kocaeli的Yuvacık水库流域应用,它是Marmara流域的喀斯特流域的典型案例。根据本研究,每种方法单独应用时提供不同的脆弱性信息。综合方法得出的最终地图显示,流域东北部和西北部的饮用水供给极易受到污染。所有喀斯特泉水补给区和靠近流域出口的区域都极易受到污染。此外,对整个流域采集的所有水样,含硝酸盐浓度最高的样品都位于易受影响区。该方法通过对22个地下水和地表水样品中硝酸盐浓度的分析进行了验证。

Resumo

A determinação de áreas vulneráveis à poluição da água em bacias hidrográficas ajuda a gerar planos de proteção de gestão de água adequados. Este estudo visa definir áreas vulneráveis a poluentes em uma bacia hidrográfica cárstica com escassez de dados na Turquia, usando uma abordagem holística que integra a ferramenta Soil and Water Assessment Tool (SWAT), a estrutura DRASTIC e isótopos selecionados dentro de um sistema de apoio à decisão baseado em um sistema de informações geográficas para delinear áreas vulneráveis. O DRASTIC foi usado para mostrar a vulnerabilidade das águas subterrâneas aos poluentes. As concentrações dos isótopos 18O, 2H, e 3H nas águas subterrâneas foram usadas para definir as áreas vulneráveis da região cárstica. O SWAT foi utilizado para mostrar a vulnerabilidade das bacias hidrográficas a poluentes em aquíferos rasos. O parâmetro da taxa de recarga no DRASTIC foi obtido do SWAT. Esta abordagem metodológica foi aplicada à Bacia da Barragem de Yuvacık em Kocaeli, parte da Bacia do Rio Marmara, por ser um bom exemplo de bacia hidrográfica cárstica. De acordo com este estudo, cada abordagem fornece diferentes vulnerabilidades quando aplicadas separadamente. O mapa final obtido da abordagem integrada mostra que o abastecimento de água potável nas partes nordeste e noroeste da bacia são altamente vulneráveis à poluição. Todas as nascentes das bacias cársticas e áreas próximas à foz são altamente vulneráveis. Além disso, em todas as amostras de água coletadas na bacia, aquelas que exibem as maiores concentrações de nitrato foram todas encontradas nas áreas mapeadas como altamente vulneráveis. A metodologia foi validada analisando a concentração de nitrato em 22 amostras de águas subterrâneas e superficiais.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abunada Z, Kishawi Y, Alslaibi TM, Kaheil N, Mittelstet A (2021) The application of SWAT-GIS tool to improve the recharge factor in the DRASTIC framework: Case study. J Hydrol 592:125613

  • Acero Triana JS, Chu ML, Guzman JA, Moriasi DN, Steiner JL (2020) Evaluating the risks of groundwater extraction in an agricultural landscape under different climate projections. Water 12(2):400. https://doi.org/10.3390/w12020400

    Article  Google Scholar 

  • Al-Dousari A, Milewski A, Ud Din S, Ahmed M (2010) Remote sensing inputs to SWAT model for groundwater recharge estimates in Kuwait. Adv Nat Appl Sci 4:71–77

    Google Scholar 

  • Aller L, Bennett T, Lehr JH, Petty RJ, Hackett G (1987) DRASTIC: a standardized system for evaluating ground water pollution potential using Hydrogeologic settings. EPA/600/2-85/018, US Environmental Protection Agency, Washington, DC

  • Amin MGM, Veith TL, Collick AS, Karsten HD, Buda AR (2017) Simulating hydrological and nonpoint source pollution processes in a karst watershed: a variable source area hydrology model evaluation. Agr Water Manag 180:212–223. https://doi.org/10.1016/j.agwat.2016.07.011

    Article  Google Scholar 

  • Arabi M, Frankenberger JR, Engel BA, Arnold JG (2008) Representation of agricultural conservation practices with SWAT. Hydrol Process 22(16):3042–3055. https://doi.org/10.1002/hyp.6890

    Article  Google Scholar 

  • Ardas S, Creutzberg D (1995) Soil reference profiles of Turkey. Dept. of Soil Science Faculty of Agriculture-Çukurova University, International Soil Reference and Information Centre, Country Report, p 3

  • Arnold JG, Srinivasan R, Muttiah RS, Williams JR (1998) Large area hydrologic modeling and assessment part I: model development. J Am Water Resour Assoc 34(1):73–89. https://doi.org/10.1111/j.1752-1688.1998.tb05961.x

    Article  Google Scholar 

  • Arnold JG, Fohrer N (2005) SWAT2000: current capabilities and research opportunities in applied watershed modeling. Hydrol Process 19(3):563–572. https://doi.org/10.1002/hyp.5611

    Article  Google Scholar 

  • Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R, Santhi C, Harmel RD, van Griensven A, Van Liew MW, Kannan N, Jha MK (2012) SWAT: model use, calibration, and validation. T Asabe 55(4):1491–1508. https://doi.org/10.13031/2013.42256

    Article  Google Scholar 

  • Arnott D, Pervan G (2014) A critical analysis of decision support systems research revisited: the rise of design science. J Inform Technol 29(4):269–293. https://doi.org/10.1057/jit.2014.16

    Article  Google Scholar 

  • Atkinson AP, Cartwright I, Gilfeddor BS, Cendon DI, Unland NP, Hoffman H (2014) Using 14C and 3H to understand groundwater flow and recharge in an aquifer window. Hydrol Earth Syst Sci 18:4951–4964

    Article  Google Scholar 

  • Bailey RT, Wible TC, Arabi M, Records RM, Ditty J (2016) Assessing regional-scale spatio-temporal patterns of groundwater-surface water interactions using a coupled SWAT-MODFLOW model. Hydrol Process 30:4420–4433. https://doi.org/10.1002/hyp.10933

    Article  Google Scholar 

  • Bagnold RA (1977) Bedload transport in natural rivers. Water Resourc Res 13:303–312. https://doi.org/10.1029/WR013i002p00303

    Article  Google Scholar 

  • Baghapour MA, Nobandegani AF, Talebbeydokhti N, Bagherzadeh S, Nadiri AA, Gharekhani M, Chitsazan N (2016) Optimization of drastic method by artificial neural network, nitrate vulnerability index, and composite drastic models to assess groundwater vulnerability for unconfined aquifer of Shiraz plain, Iran. J Environ Health Sci 14:13

    Google Scholar 

  • Barbulescu A (2020) Assessing groundwater vulnerability: DRASTIC and DRASTIC-like methods: a review. Water 12(5):1356–1377. https://doi.org/10.3390/w12051356

    Article  Google Scholar 

  • Bhandary H, Al-Fahad K, Al-Senafy M, Al-Khalid A (2012) Usage of environmental isotopes in characterizing groundwater recharge sources. WIT Trans Ecol Environ 164:223–228. https://doi.org/10.2495/WP120191

    Article  Google Scholar 

  • Bouragba L, Mudy J, Bouchaou L, Hsissou Y, Krimisa M, Tagma T, Michelot JL (2011) Isotopes and groundwater management strategies under semi-arid area: case of the Souss upstream basin (Morocco). Appl Radiat Isotopes 69(7):1084–1093

    Article  Google Scholar 

  • Bressiani D, de Gassman PW, Fernandes JG, LHP G, Srinivasan R, Bonumá NB, Mendiondo EM (2015) A review of soil and water assessment tool (SWAT) applications in Brazil: challenges and prospects. Int J Agr Biol Eng 8(3):9–35. https://doi.org/10.3965/j.ijabe.20150803.1765

    Article  Google Scholar 

  • Carver SJ (1991) Integrating multi-criteria evaluation with geographical information systems. Geogr Inf Sci 5:321–339

    Article  Google Scholar 

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, New York, 328 pp

    Google Scholar 

  • Coplen TB (1993) Uses of environmental isotopes. In: Alley WM (ed) Regional ground-water quality. Van Nostrand Reinhold, Washington, DC, pp 227–254

    Google Scholar 

  • Coplen TB, Wildman JD, Chen J (1991) Improvements in the gaseous hydrogen-water equilibration technique for hydrogen isotope ratio analysis. Analyt Chem 63(9):910–912

  • Çelmen O, Çelik M (2009) Hydrochemistry and environmental isotope study of the geothermal water around Beypazarı granitoids, Ankara, Turkey. Environ Geol 58:1689–1701

    Article  Google Scholar 

  • Chunn D, Faramarzi M, Smerdon B, Alessi D (2019) Application of an integrated SWAT–MODFLOW Model to evaluate potential impacts of climate change and water withdrawals on groundwater––surface water interactions in west-central Alberta. Water 11(1):110–138. https://doi.org/10.3390/w11010110

    Article  Google Scholar 

  • Civita M, De Maio M (2000) SINTACS R5 - Valutazione e cartografia automatica della vulnerabilità degli acquiferi all'inquinamento con il sistema parametrico. [SINTACS R5 – A new parametric system for the assessment and automatic mapping of the groundwater vulnerability to contamination.] Pitagora, Bologna, p 226

  • Delipınar Ş, Karpuzcu M (2017) Policy, legislative and institutional assessments for integrated river basin management in Turkey. Environ Sci Pol 72:20–29. https://doi.org/10.1016/j.envsci.2017.02.011

    Article  Google Scholar 

  • Doerfliger N, Zwahlen F (1998) Groundwater Vulnerability Mapping in Karstic Regions (EPIK). Practical Guide, Swiss Agency for the Environment, Forests and Landscape (SAEFL), Berne, p 56

    Google Scholar 

  • Doerfliger N, Jeannin PY, Zwahlen F (1999) Water vulnerability assessment in karst environments: a new method of defining protection areas using a multi-attribute approach and GIS tools (EPIK method). Environ Geol 39(2):165–176. https://doi.org/10.1007/s002540050446

    Article  Google Scholar 

  • Doveri M, Menichini M, Cerrina FA (2013) Stable water isotopes as fundamental tool in karst aquifer studies: some results from isotopic applications in the Apuan Alps carbonatic complexes (NW Tuscany, Italy). Water 6(8):2255–2277. https://doi.org/10.3390/w6082255

    Article  Google Scholar 

  • EEA (2012) CORINE land cover (CLC) 2012, version 2020_20u. European Environonment Agency. http://land.copernicus.eu/pan-european/corine-land-cover/clc-2012/view. Accessed May 2023

  • Eini MR, Javadi S, Delavarb M, Gassman PW, Jarihan B (2020) Development of alternative SWAT-based models for simulating water budget components and streamflow for a karst-influenced watershed. Catena 195:104801. https://doi.org/10.1016/j.catena.2020.104801

    Article  Google Scholar 

  • Epstein S, Mayeda T (1953) Variation of O18 content of waters from natural sources. Geochim Cosmochim Acta 4(5):213–224

    Article  Google Scholar 

  • Erendil M, Göncüoğlu MC, Tekeli O, Aksay A, Kuşçu İ, Ürgün BM, Tunay G, Termen A (1991) Armutlu Yarımadasının Jeolojisi. MTA Raporu, Ankara

    Google Scholar 

  • Ertürk A, Ekdal A, Gurel M, Karakaya N, Cuceloğlu G, Gonenç E (2017) Model-based assessment of groundwater vulnerability for the Dalyan region of southwestern Mediterranean Turkey. Reg Environ Chang 17:1193–1203. https://doi.org/10.1007/s10113-017-1106-8

    Article  Google Scholar 

  • Fijani E, Nadiri AA, Asghari Moghaddam A, Tsai FTC, Dixon B (2013) Optimization of DRASTIC method by supervised committee machine artificial intelligence to assess groundwater vulnerability for Maragheh–Bonab plain aquifer, Iran. J Hydrol 503:89–100. https://doi.org/10.1016/j.jhydrol.2013.08.038

    Article  Google Scholar 

  • Fontes JC (1976) Isotopes du milieu et cycles des eaux naturelles quelques aspects [Some aspects of isotopes in the environment and cycles of natural waters]. Sci. Iniv. Paris VI, Paris

    Google Scholar 

  • Foster S, Hirata R (1988) Groundwater pollution risk assessment: amethodology using available data. WHO-PAHO-CEPIS, Lima

    Google Scholar 

  • Gassman PW, Reyes MR, Green CH, Arnold JG (2007) The soil and water assessment tool: historical development, applications, and future research directions. T Asabe 50(4):1211–1250. https://doi.org/10.13031/2013.23637

    Article  Google Scholar 

  • Goldscheider N (2005) Karst groundwater vulnerability mapping: Application of a new method in the Swabian Alb, Germany. Hydrogeol J 13:555–564. https://doi.org/10.1007/s10040-003-0291-3

    Article  Google Scholar 

  • Goldscheider N, Klute M, Sturm S, Hötzl H (2000) The PI Method—A GIS-Based Approach to Mapping Groundwater Vulnerability with Special Consideration of Karst Aquifers. Z Angew Geol 46:157–166

    Google Scholar 

  • Günay G (2006) Hydrology and hydrogeology of Sakaryabası karst springs, Çifteler, Turkey. Environ Geol 51:229–240. https://doi.org/10.1007/s00254-006-0321-2

    Article  Google Scholar 

  • Gyamfi C, Ndambuki JM, Anornu GK, Kifanyi GE (2017) Groundwater recharge modelling in a large-scale basin: an example using the SWAT hydrologic model. Model Earth Syst Environ 3:1361–1369. https://doi.org/10.1007/s40808-017-0383-z

    Article  Google Scholar 

  • Hamamin DF, Nadiri AA (2018) Supervised committee fuzzy logic model to assess groundwater intrinsic vulnerability in multiple aquifer systems. Arab J Geosci 11(8):176. https://doi.org/10.1007/s12517-018-3517-3

    Article  Google Scholar 

  • Hamza SM, Ahsan A, Imteaz MA, Rahman A, Mohammed TA, Ghazali AH (2015) Accomplishment and subjectivity of GIS-based DRASTIC groundwater vulnerability assessment method: a review. Environ Earth Sci 73:3063–3076. https://doi.org/10.1007/s12665-014-3601-2

    Article  Google Scholar 

  • Health R (1983) Basic ground-water hydrology. U.S. Geological Survey Water-Supply Paper 2220, p 91

  • Jahn R, Blume HP, Asio VB, Spaargaren O, Schad P (2006) Guidelines for soil description, 4th edn. Food and Agriculture Organization of the United Nations, Rome, pp 67–77

    Google Scholar 

  • Jeelani G, Shah RA, Deshpande RD (2018) Application of water isotopes to identify the sources of groundwater recharge in a Karstified landscape of Western Himalaya. J Clim Change 4(1):37–47. https://doi.org/10.3233/JCC-180005

    Article  Google Scholar 

  • Krysanova V, White M (2015) Advances in water resources assessment with SWAT: an overview. Hydrolog Sci J 60(5):771–783. https://doi.org/10.1080/02626667.2015.1029482

    Article  Google Scholar 

  • Lee S, Sadeghi AM, McCarty GW, Baffaut C, Lohani S, Duriancik LS, Thompson A, Yeo IY, Wallace C (2018) Assessing the suitability of the soil vulnerability index (SVI) on identifying croplands vulnerable to nitrogen loss using the SWAT model. Catena 167:1–12. https://doi.org/10.1016/j.catena.2018.04.021

    Article  Google Scholar 

  • Lucas LL, Unterweger MP (2000) Comprehensive review and critical evaluation of the half-life of tritium. J Res Natl Inst Stand Technol 10:541–549. https://doi.org/10.6028/jres.105.043

    Article  Google Scholar 

  • Melaku ND, Wang J (2019) A modified SWAT module for estimating groundwater table at Lethbridge and Barons, Alberta, Canada. J Hydrol 575:420–431. https://doi.org/10.1016/j.jhydrol.2019.05.052

    Article  Google Scholar 

  • Merchant JW (1994) GIS-based groundwater pollution Hazard assessment: a critical review of the DRASTIC model. Photogramm Eng Rem 60(9):1117–1127

    Google Scholar 

  • MRB (2015) Marmara River basin protection plans. Ministry of Agriculture and Forestry, General Directorate of Water Management, Ankara, Turkey, 466 pp

  • Moazamnia M, Hassanzadeh Y, Nadiri AA, Sadeghfam S (2020) Vulnerability indexing to saltwater intrusion from models at two levels using artificial intelligence multiple model (AIMM). J Environ Manag 255:109871. https://doi.org/10.1016/j.jenvman.2019.109871

    Article  Google Scholar 

  • Moriasi DN, Gitau MW, Pai N, Daggupati P (2015) hydrologic and water quality models: performance measures and evaluation criteria. Trans Asabe 58(6):1763–1785. https://doi.org/10.13031/trans.58.10715

    Article  Google Scholar 

  • Nadiri AA, Sedghi Z, Khatibi R, Gharekhani M (2017a) Mapping vulnerability of multiple aquifers using multiple models and fuzzy logic to objectively derive model structures. Sci Total Environ 593–594:75–90

    Article  Google Scholar 

  • Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S, Moghaddam AA (2017b) Groundwater vulnerability indices conditioned by supervised intelligence committee machine (SICM). Sci Total Environ 574:691–706

    Article  Google Scholar 

  • Nadiri AA, Sedghi Z, Khatibi R, Sadeghfam S (2018a) Mapping specific vulnerability of multiple confined and unconfined aquifers by using artificial intelligence to learn from multiple DRASTIC frameworks. J Environ Manag 227:415–428

    Article  Google Scholar 

  • Nadiri AA, Sadeghfam S, Gharekhani M, Khatibi R, Akbari E (2018b) Introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using “risk cells”. J Environ Manag 217:654–667. https://doi.org/10.1016/j.jenvman.2018.04.011

    Article  Google Scholar 

  • Nadiri AA, Norouzi H, Khatibi R, Gharekhani M (2019) Groundwater DRASTIC vulnerability mapping by unsupervised and supervised techniques using a modelling strategy in two levels. J Hydrol 574:744–759

    Article  Google Scholar 

  • Nadiri AA, Moazamnia M, Sadeghfam S, Gnanachandrasamy G, Venkatramanan S (2022) Formulating convolutional neural network for mapping total aquifer vulnerability to pollution. Environ Poll 304:119208

    Article  Google Scholar 

  • Özdemir A, Leloğlu UM (2018) A fast and automated hydrologic calibration tool for SWAT. Water Environ J 33:488–498. https://doi.org/10.1111/wej.12419

    Article  Google Scholar 

  • Özdemir A (2019) Defining groundwater resource protection zones in aquifers using stable isotope analysis: a case study from the Namazgah Dam Basin in Turkey. Environ Earth Sci 78:509. https://doi.org/10.1007/s12665-019-8514-7

    Article  Google Scholar 

  • Özdemir A (2020) Evaluation of climate change impacts on runoff and sediment at the basin scale: Yuvacik Dam Lake Basin. J Geol Eng 45(1):129–154. https://doi.org/10.24232/jmd.941528

    Article  Google Scholar 

  • Pereira DL, Galvão P, Lucon T, Fujaco MA (2019) Adapting the EPIK method to Brazilian hydro(geo)logical context of the São Miguel watershed to assess karstic aquifer vulnerability to contamination. J S Am Earth Sci 90:191–203

    Article  Google Scholar 

  • Ravikumar P, Somashekar RK (2011) Environmental tritium (3H) and hydrochemical investigations to evaluate groundwater in Varahi and Markandeya River basins, Karnataka, India. J Environ Radioactiv 102:153–162. https://doi.org/10.1016/j.jenvrad.2010.11.006

    Article  Google Scholar 

  • Rozanski K, Aragua’s-Aragua’s L, Gonfiantini R (1993) Isotopic patters in modern global precipitation. In: Swart PK et al (eds) Climate change in continental isotopic records. Geophysical Monograph Series 78, AGU, Washington, pp 1–36

  • Sadeghfam S, Khatibi R, Dadashi S, Nadiri AA (2020) Transforming subsidence vulnerability indexing based on ALPRIFT into risk indexing using a new fuzzy-catastrophe scheme. Environ Impact Assess Rev 82:106352

  • Sadeghfam S, Khatibi R, Nadiri AA, Ghodsi K (2021) Next stages in aquifer vulnerability studies by integrating risk indexing with understanding uncertainties by using generalised likelihood uncertainty estimation. Expo Health 13(3):375–389. https://doi.org/10.1007/s12403-021-00389-6

    Article  Google Scholar 

  • Setianto A, Triandini T (2013) Comparison of kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis. J Appl Geol 5(1):21–29

    Google Scholar 

  • Tan ML, Gassman PW, Srinivasan R, Arnold JG, Yang X (2019) A review of SWAT studies in Southeast Asia: applications, challenges and future directions. Water 11(5):914. https://doi.org/10.3390/w11050914

    Article  Google Scholar 

  • Tuppad P, Douglas-Mankin KR, Lee T, Srinivasan R, Arnold JG (2011) Soil and water assessment tool (SWAT) hydrologic/water quality model: extended capability and wider adoption. Trans Asabe 54(5):1677–1684. https://doi.org/10.13031/2013.34915

    Article  Google Scholar 

  • Van Beynen P, Townsend K (2005) A disturbance index for karst environments. Environ Manage 36(1):101–16

    Article  Google Scholar 

  • Van Griensven A, Breuer L, Di Luzio M, Vandenberghe V, Goethals P, Meixner T, Arnold J, Srinivasan R (2006) Environmental and ecological hydroinformatics to support the implementation of the European water framework directive for river basin management. J Hydroinf 8(4):239–252. https://doi.org/10.2166/hydro.2006.010

    Article  Google Scholar 

  • Vías JM, Andreo B, Perles MJ, Carrasco F, Vadillo I, Jiménez P (2006) Proposed method for groundwater vulnerability mapping in carbonate (karstic) aquifers: the COP method. Hydrogeol J 14(6):912–925

    Article  Google Scholar 

  • Wei X, Bailey RT (2019) Assessment of system responses in intensively irrigated stream–aquifer systems using SWAT-MODFLOW. Water 11(8):1576. https://doi.org/10.3390/w11081576

    Article  Google Scholar 

  • Wei X, Bailey RT, Records RM, Wible TC, Arabi M (2018) Comprehensive simulation of nitrate transport in coupled surface-subsurface hydrologic systems using the linked SWAT-MODFLOW-RT3D model. Environ Model Softw 122:104242. https://doi.org/10.1016/j.envsoft.2018.06.0

    Article  Google Scholar 

  • Winchell MF, Peranginangin N, Srinivasan R, Chen W (2018) Soil and water assessment tool model predictions of annual maximum pesticide concentrations in high vulnerability watersheds. Integr Environ Assess Manage 14:358–368. https://doi.org/10.1002/ieam.2014

    Article  Google Scholar 

  • Woldemariyan F, Ayenew T (2016) Application of hydrochemical and isotopic techniques to understand groundwater recharge and flow systems in the Dawa River basin, southern Ethiopia. Environ Earth Sci 75:1002. https://doi.org/10.1007/s12665-016-5777-0

    Article  Google Scholar 

  • Wood WW, Sanford WE (1995) Chemical and isotopic methods for quantifying ground water recharge in a regional, semiarid environment. Groundwater 33:458–468

    Article  Google Scholar 

  • Yang J, Reichert P, Abbaspour K, Xia J, Yang H (2008) Comparing uncertainty analysis techniques for a SWAT application to the Chaohe Basin in China. J Hydrol 358(1–2):1–23. https://doi.org/10.1016/j.jhydrol.2008.05.012

    Article  Google Scholar 

  • YVCK (2015) Yuvacık Dam Lake Basin basin protection and special provision determination project. Kocaeli Metropolitan Municipality, ISU general directorate, Kocaeli, Turky, 179 pp

  • YVCK (2017) The Yuvacık dam basin special provisions 13.06.2018/340. https://www.tarimorman.gov.tr/SYGM/Belgeler/i%C3%A7me%20suyu%20koruma%20planlar%C4%B1/Yuvac%C4%B1k%20Baraj%20G%C3%B6l%C3%BC%20Havzas%C4%B1%20%C3%96zel%20H%C3%BCk%C3%BCmleri.pdf. Accessed May 2023

  • Zhao LJ, Eastoe CJ, Liu XH, Wang LX, Wang NL, Xie C, Song YX (2018) Origin and residence time of groundwater based on stable and radioactive isotopes in the Heihe River basin, northwestern China. J Hydrol: Region Stud 18:31–49. https://doi.org/10.1016/j.ejrh.2018.05.002

    Article  Google Scholar 

Download references

Acknowledgements

The data obtained from the Yuvacık Dam Lake Basin Basin Protection and Special Provision Determination Project were used in this study, and the author is grateful to the Republic of Turkey Kocaeli Metropolitan Municipality ISU General Directorate for these data and the support data on the Yuvacık Dam Basin. The author would also like to thank geological engineer Abdullah Altuntaş and map engineer Azize Koç for their assistance in field sampling.

Funding

The author declares that no funds or grants were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayfer Özdemir.

Ethics declarations

Conflicts of interest

There are no conflicts of interest. The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Özdemir, A. Determination of areas vulnerable to pollution in a karstic river basin in Turkey via a decision support system based on DRASTIC, SWAT and isotopes analysis. Hydrogeol J 31, 1209–1228 (2023). https://doi.org/10.1007/s10040-023-02648-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02648-z

Keywords

Navigation