Skip to main content
Log in

Non-Darcian effect on a sinusoidal pumping test in a leaky confined aquifer

Effet non-Darcien sur un essai de pompage sinusoïdal dans un aquifère captif avec pertes

Efecto no darciano de un ensayo de bombeo sinusoidal en un acuífero confinado permeable

越流承压含水层中正弦抽水试验的非达西效应

Efeito não darciniano no resultado de ensaio de bombeamento senoidal em um aquífero semiconfinado

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Sinusoidal pumping tests have been widely used to determine aquifer hydraulic properties because of the advantages of separable background pressure, lower disposal costs for contaminated water and shorter time to reach relative stability. Previous studies focusing on sinusoidal pumping tests were mainly based on Darcy’s law, which considers the hydraulic gradient to be a linear function of specific discharge. This study investigated the non-Darcian effect on sinusoidal pumping tests, where the aquifer leakage and wellbore storage effects are also taken into account. Type-curve analysis results suggested that a larger inertial force coefficient (β) or a smaller leakage coefficient (B) results in a smaller drawdown amplitude. The aquifer drawdown always lags behind the change in sinusoidal pumping rate. A larger β or B results in a larger delay time between a change in the pumping rate and the drawdown. The sensitivity analysis indicated that the drawdown is more sensitive to the change in β, B or the radius of the well casing (rc) at early times of pumping. Besides, at later times the drawdown is most sensitive to rc, second to B, and least sensitive to β. Considering the special time-delay characteristics of drawdown, a new delay effect method was proposed to estimate the inertial force coefficient, hydraulic conductivity, and leakage coefficient of the confined aquifer. The applicability and robustness of this method were demonstrated in a field pumping test conducted in an aquitard-aquifer system at the Savannah River Site, South Carolina, USA.

Résumé

Les tests de pompage sinusoïdaux ont été largement utilisés pour déterminer les propriétés hydrauliques des aquifères en raison de leurs avantages tels qu’une pression de fond identifiable, des coûts plus faibles pour l’élimination des eaux contaminées et du temps plus court pour atteindre une stabilité relative. Des études antérieures portant sur les essais de pompage sinusoïdaux étaient principalement basées sur la loi de Darcy, qui considère que le gradient hydraulique est une fonction linéaire du débit spécifique. Cette étude a examiné l’effet non-darcien sur les tests de pompage sinusoïdaux, où les effets de fuite de l’aquifère et de stockage au sein du puits sont également pris en compte. Les résultats de l’analyse des courbes types suggèrent qu’un coefficient de force d’inertie plus grand (β) ou un coefficient de fuite plus petit (B) entraîne une amplitude de rabattement plus faible. Le rabattement de l’aquifère est toujours en retard par rapport à la variation du taux de pompage sinusoïdal. Un β ou B plus grand entraîne un retard plus important entre une modification du taux de pompage et le rabattement. L’analyse de sensibilité a indiqué que le rabattement est plus sensible à la variation de β, de B ou du rayon du tubage du puits (rc) aux premiers moments du pompage. En outre, plus tard, le rabattement est plus sensible à rc, puis à B, et moins sensible à β. Compte tenu des caractéristiques particulières du rabattement dans le temps, une nouvelle méthode d’effet retard a été proposée pour estimer le coefficient de force d’inertie, la conductivité hydraulique et le coefficient de fuite de l’aquifère captif. L’applicabilité et la robustesse de cette méthode ont été démontrées lors d’un essai de pompage sur le terrain réalisé dans un système aquitard-aquifère sur le site de Savannah River, en Caroline du Sud, aux États-Unis d’Amérique.

Resumen

Los ensayos de bombeo sinusoidales se han utilizado ampliamente para determinar las propiedades hidráulicas de los acuíferos debido a las ventajas que presentan: separación de la presión de fondo, menores costes de eliminación del agua contaminada y menor tiempo para alcanzar la estabilidad relativa. Los estudios realizados anteriormente sobre ensayos de bombeo sinusoidal se basaban principalmente en la ley de Darcy, que considera que el gradiente hidráulico es una función lineal de la descarga específica. En este estudio se investigó el efecto no darciano en las pruebas de bombeo sinusoidal, en las que también se tienen en cuenta los efectos de filtración del acuífero y de almacenamiento en el pozo. Los resultados del análisis de la curva tipo sugieren que un coeficiente de fuerza de inercia (β) mayor o un coeficiente de filtración (B) menor dan lugar a una menor amplitud de la depresión. La depresión en el acuífero siempre va por detrás del cambio en el caudal de bombeo sinusoidal. A mayor β o B, mayor tiempo de retardo entre un cambio en el caudal de bombeo y la disminución del nivel freático. El análisis de sensibilidad indicó que la depresión es más sensible al cambio de β, B o el radio de la tubería del pozo (rc) en los primeros momentos del bombeo. Además, en momentos posteriores, la depresión es más sensible a rc, en segundo lugar, a B y menos sensible a β. Teniendo en cuenta las características especiales de retardo temporal de la depresión, se propuso un nuevo método de efecto de retardo para estimar el coeficiente de fuerza de inercia, la conductividad hidráulica y el coeficiente de filtración del acuífero confinado. La aplicabilidad y solidez de este método se demostraron en un ensayo de bombeo de campo realizado en un sistema acuífero-acuífero en el emplazamiento del río Savannah, en Carolina del Sur (EEUU).

摘要

正弦抽水试验因其可分离的背景压力、更低的水污染处理成本和更短达到相对稳定的时间等优点,已经被广泛用于确定含水层的水力性质。以往有关正弦抽水试验的研究主要是基于达西定律,该定律认为水力梯度是单位流量的线性函数。本研究探索了正弦抽水试验中的非达西效应,并且还考虑了含水层越流和井筒储存效应。标准曲线分析结果表明,较大的惯性力系数(β)或较小的越流系数(B)会导致更小的降深振幅。含水层降深总是滞后于正弦抽水流量的变化。β或B越大,抽水流量和降深变化之间的延迟时间越大。敏感性分析表明,降深在抽水初期对βB或井筒半径(rc)的变化更为敏感。此外,在抽水后期,降深对rc最敏感,其次是B,对β最不敏感。考虑到降深的特殊时间延迟特性,提出了一种新的延迟效应法来估计承压含水层的惯性力系数、渗透系数和越流系数。该方法的适用性和稳健性通过美国南卡罗来纳州萨凡纳河含水层系统中进行的现场抽水试验进行了验证。

Resumo

Ensaios de bombeamento senoidal têm sido amplamente utilizados para determinar as propriedades hidráulicas de aquíferos por apresentarem vantagens como a separação da pressão ambiente, a redução de custo com o descarte de água contaminada e a agilidade na estabilização relativa do ensaio. Estudos anteriores com foco em ensaios de bombeamento senoidal foram baseados principalmente na lei de Darcy, que considera o gradiente hidráulico como uma função linear da vazão específica. Este estudo investigou o efeito não darciano em ensaios de bombeamento senoidal, onde os efeitos de vazamento do aquífero e armazenamento no poço também são levados em consideração. Os resultados da análise da curva tipo sugeriram que um coeficiente de força inercial maior (β) ou um coeficiente de vazamento menor (B) resultam em uma amplitude de rebaixamento menor. O rebaixamento do aquífero sempre ocorre com um atraso em relação à mudança na taxa de bombeamento senoidal. Um β ou B maior resulta em um tempo de atraso maior entre uma mudança na taxa de bombeamento e o rebaixamento. A análise de sensibilidade indicou que o rebaixamento é mais sensível à variação de β, B ou raio do revestimento do poço (rc) no início do bombeamento. Além disso, em momentos posteriores, o rebaixamento é mais sensível a rc, depois a B e menos sensível a β. Considerando as características especiais de atraso do rebaixamento, um novo método de efeito de atraso foi proposto para estimar o coeficiente de força inercial, a condutividade hidráulica e o coeficiente de vazamento do aquífero confinado. A aplicabilidade e robustez deste método foram demonstradas em um ensaio de bombeamento de campo conduzido em um sistema aquitardo-aquífero no Site do Rio Savannah, Carolina do Sul, EUA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aadland RK, Gellici JA, Thayer PA (1995) Hydrogeologic framework of west-central South Carolina. South Carolina Department of Natural Resources, Water Resources Report, Columbia, SC

    Google Scholar 

  • Ahn S, Horne RN (2011) The use of attenuation and phase shift to estimate. Proceedings - SPE Annual Technical Conference and Exhibition, Denver, CO. 30 Oct to 2 Nov 2011. SPE, Richardson, TX

  • Bakker M (2009) Sinusoidal pumping of groundwater near cylindrical inhomogeneities. J Eng Mech 64:131–143

    Google Scholar 

  • Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers. J Hydrol Eng 9:51–59

    Article  Google Scholar 

  • Black JH, Kipp KL (1981) Determination of hydrogeological parameters using sinusoidal pressure tests: a theoretical appraisal. Water Resour Res 17:686–692

    Article  Google Scholar 

  • Bruggeman GA (1999) Analytical solutions of geohydrological problems. Developments in water science, vol 46. Elsevier, Amsterdam

  • Cardiff M, Barrash W (2014) Analytical and semi-analytical tools for the design of oscillatory pumping tests. Ground Water 53:896–907

    Article  Google Scholar 

  • Cardiff M, Bakhos T, Kitanidis PK, Barrash W (2013) Aquifer heterogeneity characterization with oscillatory pumping: sensitivity analysis and imaging potential. Water Resour Res 49:5395–5410

    Article  Google Scholar 

  • Chen CS, Chang CC (2003) Well hydraulics theory and data analysis of the constant head test in an unconfined aquifer with the skin effect. Water Resource Res 39:63–69

    Article  Google Scholar 

  • Cheng Y, Renner J (2021) Constraints on hydraulic anisotropy from periodic pumping tests using a double-packer system. Water Resource Res 57

  • Choi ES, Cheema T, Islam MR (1997) A new dual-porosity/dual-permeability model with non-Darcian flow through fractures. J Petrol Sci Eng 17:331–344

    Article  Google Scholar 

  • Cobb PM, Mcelwee CD, Butt MA (1982) Analysis of leaky aquifer pumping test data: an automated numerical solution using sensitivity analysis. Groundwater 20:325–333

    Article  Google Scholar 

  • Dagan G, Rabinovich A (2015) Oscillatory pumping wells in phreatic, compressible, and homogeneous aquifers. Water Resource Res 50:7058–7066. https://doi.org/10.1002/2014WR015454

    Article  Google Scholar 

  • Ferris JG (1952) Cyclic fluctuations of water level as a basis for determining aquifer transmissibility. US Geological Survey, Reston, VA, pp 305–323. https://doi.org/10.3133/70133368

  • Fokker PA, Verga F (2011) Application of harmonic pulse testing to water-oil displacement. J Petrol Sci Eng 79:125–134

    Article  Google Scholar 

  • Fokker PA, Salina Borello E, Serazio C, Verga F (2012) Estimating reservoir heterogeneities from pulse testing. J Petrol Sci Eng 86–87:15–26

    Article  Google Scholar 

  • Fokker PA, Renner J, Verga F (2013) Numerical modeling of periodic pumping tests in wells penetrating a heterogeneous aquifer. Am J Environ Sci 9:1–13

    Article  Google Scholar 

  • Forchheimer P (1901) Wasserbewegun durch Boden [Water movement through soil]. Zeitschr Vereines Deutsch Ing 49:1782–1788

    Google Scholar 

  • Guiltinan E, Becker MW (2015) Measuring well hydraulic connectivity in fractured bedrock using periodic slug tests. J Hydrol 521:100–107

    Article  Google Scholar 

  • Hiller CK, Levy BS (1994) Estimation of aquifer diffusivity from analysis of constant head pumping test data. Groundwater 32:47–52

    Article  Google Scholar 

  • Huang YC, Yeh HD (2007) The use of sensitivity analysis in on-line aquifer parameter estimation. J Hydrol 335:406–418

    Article  Google Scholar 

  • Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. EOS Trans Am Geophys Union 33:559

    Article  Google Scholar 

  • Ji SH, Koh YK (2015) Nonlinear groundwater flow during a slug test in fractured rock. J Hydrol 520:30–36

    Article  Google Scholar 

  • Kabala ZJ (2001) Sensitivity analysis of a pumping test on a well with wellbore storage and skin. Adv Water Resour 24:483–504

    Article  Google Scholar 

  • Kollet SJ, Zlotnik VA (2005) Influence of aquifer heterogeneity and return flow on pumping test data interpretation. J Hydrol 300:267–285

    Article  Google Scholar 

  • Kuang X, Jiao JJ, Zheng C, Cherry JA, Li H (2020) A review of specific storage in aquifers. J Hydrol 581:124383

    Article  Google Scholar 

  • Kuo CH (1972) Determination of reservoir properties from sinusoidal and multirate flow tests in one or more wells. SPE J 12:499–507

    Google Scholar 

  • Li P, Qian H (2013) Global curve-fitting for determining the hydrogeological parameters of leaky confined aquifers by transient flow pumping test. Arab J Geosci 6:2745–2753

    Article  Google Scholar 

  • Li Y, Zhou Z (2022) Non-Darcian flow effect on a sinusoidal pumping test in a leaky confined aquifer. https://doi.org/10.6084/m9.figshare.21533928.v1

  • Li Y, Zhou Z, Zhuang C, Huang Y, Wang J (2020) Non-Darcian effect on a variable-rate pumping test in a confined aquifer. Hydrogeol J 28:2853–2863

    Article  Google Scholar 

  • Li Y, Zhou Z, Shen Q, Zhuang C, Wang P (2021) Two-region Darcian and non-Darcian flow towards a well with exponentially decayed rates considering time-dependent critical radius. J Hydrol 601

  • Marschall P, Barczewski B (1989) The analysis of slug tests in the frequency domain. Water Resour Res 25:2388–2396

    Article  Google Scholar 

  • Mathias SA, Butler AP, Zhan H (2008) Approximate solutions for Forchheimer flow to a well. J Hydraul Eng 134:1318–1325

    Article  Google Scholar 

  • Mathias SA, Todman LC (2010) Step-drawdown tests and the Forchheimer equation. Water Resource Res 46. https://doi.org/10.1029/2009WR008635

  • Mcelwee CD, Yukler MA (1978) Sensitivity of groundwater models with respect to variations in transmissivity and storage. Water Resour Res 14:451–459

    Article  Google Scholar 

  • McElwee CD (1987) Sensitivity analysis of ground-water models. Advances in transport phenomena in porous media. Springer, Heidelberg, pp 751–817

    Chapter  Google Scholar 

  • Mishra GC, Chachadi AG (1995) Unsteady flow to a large-diameter well in a finite aquifer. ISH J Hydraul Eng 1:72–83

    Article  Google Scholar 

  • Moutsopoulos KN, Papaspyros INE, Tsihrintzis VA (2009) Experimental investigation of inertial flow processes in porous media. J Hydrol 374:242–254

    Article  Google Scholar 

  • Neuman SP, Guadagnini A, Riva M (2004) Type-curve estimation of statistical heterogeneity. Water Resour Res 40:W042011–W042017

    Article  Google Scholar 

  • Quinn PM, Parker BL, Cherry JA (2013) Validation of non-Darcian flow effects in slug tests conducted in fractured rock boreholes. J Hydrol 486:505–518

    Article  Google Scholar 

  • Rabinovich A, Barrash W, Cardiff M, Hochstetler DL, Bakhos T, Dagan G, Kitanidis PK (2015) Frequency dependent hydraulic properties estimated from oscillatory pumping tests in an unconfined aquifer. J Hydrol 531:2–16

    Article  Google Scholar 

  • Rasmussen TC, Haborak KG, Young MH (2003) Estimating aquifer hydraulic properties using sinusoidal pumping at the Savannah River site, South Carolina, USA. Hydrogeol J 11:466–482

    Article  Google Scholar 

  • Rasmussen TN, Toll J, Bakker M (2013) Sinusoidal hydraulic testing of a multi-layer aquifer at the Waste Isolation Pilot Plant, Carlsbad, NM, USA. Environ Sci

  • Renner J, Messar M (2006) Periodic pumping tests. Geophys J Int 167:479–493

    Article  Google Scholar 

  • Rosa AJ, Horne RN (1997) Reservoir description by well-test analysis using cyclic flow-rate variation. SPE Form Eval 12:247–254

    Article  Google Scholar 

  • Salina Borello E, Fokker PA, Viberti D, Verga F, Hofmann H, Meier P, Min K-B, Yoon K, Zimmermann G (2019) Harmonic pulse testing for well monitoring: application to a fractured geothermal reservoir. Water Resour Res 55:4727–4744

    Article  Google Scholar 

  • Schroeter VT, Hollaender F, Gringarten AC (2004) Deconvolution of well-test data as a nonlinear total least-squares problem. SPE J 9:375–390

    Article  Google Scholar 

  • Sen Z (1987) Non-Darcian flow in fractured rocks with a linear flow pattern. J Hydrol 92:43–57

    Article  Google Scholar 

  • Sen Z (1990) Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resour Res 26:1103–1109

    Google Scholar 

  • Sidiropoulou MG, Moutsopoulos KN, Tsihrintzis VA (2007) Determination of Forchheimer equation coefficients a and b. Hydrol Process 21:534–554

    Article  Google Scholar 

  • Teh C, Nie X (2002) Coupled consolidation theory with non-Darcian flow. Comput Geotech 29:169–209

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage. EOS Trans Am Geophys Union 16:519–524

    Article  Google Scholar 

  • Wang Q, Zhan H, Wang Y (2015) Non-Darcian effect on slug test in a leaky confined aquifer. J Hydrol 527:747–753

    Article  Google Scholar 

  • Wang L, Dai C, Xue L (2018) A semianalytical model for pumping tests in finite heterogeneous confined aquifers with arbitrarily shaped boundary. Water Resour Res 54:3207–3216

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2008) Non-Darcian flow to a well in an aquifer–aquitard system. Adv Water Resour 31:1754–1763

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2009) A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function. J Hydrol 364(1–2):99–106

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2011) Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation. Hydrogeol J 19:563–572

    Article  Google Scholar 

  • Xia Q, Kuang X, Zhan H, Xu M, Wang S, Fan S (2020) Analytical solution of capture time to a partially penetrating well in a semi-infinite aquifer. J Hydrol 580:124233

    Article  Google Scholar 

  • Yang SY, Yeh HD (2009) Radial groundwater flow to a finite diameter well in a leaky confined aquifer with a finite-thickness skin. Hydrol Process 23:3382–3390

    Article  Google Scholar 

  • Yates S (1988) An analytical solution to saturated flow in a finite stratified aquifer. Groundwater 26:199–206

    Article  Google Scholar 

  • Yeh HD, Wang CT (2009) Analysis of well residual drawdown after a constant-head test. J Hydrol 373:436–441

    Article  Google Scholar 

  • Yin M, Shao J, Xue X, Meng X, Liu D (2015) Low velocity non-Darcian flow to a well fully penetrating a confined aquifer in the first kind of leaky aquifer system. J Hydrol 530:533–553

    Article  Google Scholar 

  • Young MH, Rasmussen TC, Lyons FC, Pennell KD (2002) Optimized system to improve pumping rate stability during aquifer tests. Groundwater 40:629–637

    Article  Google Scholar 

  • Zech A, Muller S, Mai J, Hebe F, Attinger S (2016) Extending Theis’ solution: Using transient pumping tests to estimate parameters of aquifer heterogeneity. Water Resour Res 52:6156–6170

    Article  Google Scholar 

  • Zenner MA (2009) Near-well nonlinear flow identified by various displacement well response testing. Groundwater 47:526–535

    Article  Google Scholar 

  • Zhao Z, Illman WA (2018) Three-dimensional imaging of aquifer and aquitard heterogeneity via transient hydraulic tomography at a highly heterogeneous field site. J Hydrol 559:392–410

    Article  Google Scholar 

  • Zhuang C, Zhou Z, Illman WA (2017) A joint analytic method for estimating aquitard hydraulic parameters. Groundwater 55:565–576

    Article  Google Scholar 

  • Zhuang C, Zhou Z, Zhan H, Wang J, Li Y, Dou Z (2019) New graphical methods for estimating aquifer hydraulic parameters using pumping tests with exponentially decreasing rates. Hydrol Process 33:2314–2322

    Article  Google Scholar 

  • Zhuang C, Li Y, Zhou Z, Illman WA, Dou Z, Wang J, Yan L (2020) A type-curve method for the analysis of pumping tests with piecewise-linear pumping rates. Groundwater 58:788–798

    Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant Nos. 41572209).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Zhou.

Ethics declarations

Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 617 KB)

Appendix Nomenclature

Appendix Nomenclature

Symbol

Parameter

Q .0

Amplitude of the pumping rate [L3/T]

t

Pumping time [T]

T

Pumping period [T]

i

Imaginary number

φ

Initial phase of the pumping rate function [-]

Q

Pumping rate [L3/T]

r

Radial distance from the pumping well [L]

r w

Effective radius of the well [L]

r c

Radius of the well casing [L]

s w

Drawdown inside the well [L]

q

Specific discharge [L/T]

s

Aquifer drawdown [L]

S

Storage coefficient of the confined aquifer [-]

m

Aquifer thickness [L]

B

Aquifer leakage coefficient [LT]

K 1

Aquitard vertical hydraulic conductivity [L/T]

m 1

Aquitard thickness [L]

β

Inertial force coefficient [T/L]

K

Apparent hydraulic conductivity [L/T]

ρ

Porosity

D p

Characteristic grain diameter [L];

υ

Kinematic viscosity of the fluid [L2/T]

K 0

Zero-order modified Bessel function of the second kind

J 0

Zero-order Bessel function of the first kind

λ

Integral variable

t Q

Time of local maximum pumping rate [T]

t s

Time of local maximum drawdown [T]

n

Number of pumping cycle

τ

Delay time of aquifer drawdown [T]

A

Drawdown amplitude [L]

ε t

Delay time ratio [-]

ε A

Drawdown amplitude ratio [-]

r D

Dimensionless radial distance from the pumping well

r wD

Dimensionless effective radius of the well

r cD

Dimensionless radius of the well casing

t D

Dimensionless pumping time

Q D

Dimensionless pumping rate

s D

Dimensionless drawdown

s wD

Dimensionless drawdown inside the well

q D

Dimensionless specific discharge

β D

Dimensionless inertial force coefficient

B D

Dimensionless leakage coefficient of the aquifer

T D

Dimensionless pumping period

A D

Dimensionless drawdown amplitude

t sD

Dimensionless time of local maximum drawdown

t QD

Dimensionless time of local maximum pumping rate

τ D

Dimensionless delay time

Dimensionless parameters: \({r}_{\mathrm{D}}=\frac{r}{m}\), \({r}_{\mathrm{cD}}=\frac{{r}_{\mathrm{c}}}{m}\), \({r}_{\mathrm{wD}}=\frac{{r}_{\mathrm{w}}}{m}\), \({t}_{\mathrm{D}}=\frac{Kt}{Sm}\), \({Q}_{\mathrm{D}}=\frac{Q}{{Q}_{0}}\), \({s}_{\text{D}}=\frac{4\pi Km}{{Q}_{0}}s\), \({s}_{\text{wD}}=\frac{4\pi Km}{{Q}_{0}}{s}_{\text{w}}\), \({q}_{\text{D}}=-\frac{4\pi {m}^{2}}{{Q}_{0}}q\), \({\beta }_{\mathrm{D}}=\frac{\beta {Q}_{0}}{4\uppi {m}^{2}}\), \({B}_{\mathrm{D}}=\frac{BK}{{m}^{2}}\), \({T}_{\mathrm{D}}=\frac{KT}{Sm}\), \({A}_{\text{D}}=\frac{4\pi Km}{{Q}_{0}}A\), \({t}_{s\mathrm{D}}=\frac{{Kt}_{s}}{Sm}\), \({t}_{Q\mathrm{D}}=\frac{{Kt}_{Q}}{Sm}\),\({\tau }_{\mathrm{D}}=\frac{K\tau }{Sm}\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhou, Z., Zhuang, C. et al. Non-Darcian effect on a sinusoidal pumping test in a leaky confined aquifer. Hydrogeol J 31, 931–946 (2023). https://doi.org/10.1007/s10040-023-02618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-023-02618-5

Keywords

Navigation