Abstract
Understanding the hydrological functioning of the scarce freshwater bodies of semiarid regions is crucial, especially in those areas affected by anthropic activities involving land-use changes. In the dry western edge of the Argentina Pampean plains, a system of more than 100 shallow lakes of remarkable stability occurs. These lakes exhibit low salinity compared to those located in the more humid belt. This system has constituted the main water resource for humans from prehispanic times to the present. Stable isotopes were used to establish the seasonal surface-water/groundwater interactions and the hydrological conditions in a lake of the Dry Pampean Plain (DPP), i.e., Lake Los Pocitos, to understand the mechanism that guarantees such a resource. Results indicate that evaporation mainly controls the isotopic composition of lake water, overwhelming the effect of higher rainfall inputs during the wet (but also most evaporative) season. The δ18O mass balance model indicates greater groundwater inflow to the lake during the dry season (~0.4 m month−1) compared to the wet season (~0.2 m month−1). Lake level decreased in the wet season due to the lowest groundwater inflow and the greatest evaporation rate. Based on the proportion of water entering a lake that leaves through evaporation, Los Pocitos corresponds to a throughflow lake with a short water residence time (~0.47 years). These hydrologic conditions, along with freshwater inputs from a dune located at the western margin of the lake, determine the existence of this relatively stable and freshwater lake in the DPP where high evaporation rates are registered.
Résumé
Comprendre le fonctionnement hydrologique des régions semi-arides ayant peu de ressources en eau douce est cruciale, spécialement dans les secteurs sous pression anthropique impliquant des changements d’utilisation des sols. Dans le secteur de la bordure ouest aride des plaines de la Pampa argentine, un système de plus de 100 lacs peu profonds remarquablement stable se développe. Ces lacs montrent une faible salinité en comparaison des lacs se développant sur une ceinture plus humide. Ce système a constitué la principale ressource en eau pour les hommes depuis l’époque pré-espagnole jusqu’à aujourd’hui. Les isotopes stables ont été utilisés pour établir les interactions saisonnières entre les eaux de surface et les eaux souterraines et les conditions hydrologiques d’un lac de la plaine aride de la Pampa (DPP), à savoir le lac Los Pocitos, afin de comprendre le mécanisme qui garantit cette ressource. Les résultats indiquent que l’évaporation contrôle principalement la composition isotopique des eaux du lac, dépassant l’effet des forts apports par précipitation durant la saison humide (mais aussi de plus forte évaporation). Le modèle de bilan de masse de δ18O indique de plus forts apports au lac par les eaux souterraines durant la saison sèche (~0.4 m mois−1) que durant la saison humide (~0.2 m mois−1). Le niveau du lac baisse en saison humide du fait de plus faibles apports d’eau souterraine et un taux d’évaporation plus important. En se basant sur la proportion d’eau entrant dans le lac et s’évaporant, Los Pocitos correspond à un lac d’eau circulante avec un court temps de résidence (~0.47 ans). Ces conditions hydrologiques, en plus d’apports d’eau douce d’une dune localisée sur la bordure ouest du lac, détermine l’existence d’une relative stabilité et qualité d’eau douce du lac dans la DPP où de forts taux d’évaporation sont enregistrés.
Resumen
La comprensión del funcionamiento hidrológico de los escasos cuerpos de agua dulce emplazados en regiones semiáridas es crucial, especialmente en aquellas zonas afectadas por actividades antrópicas como son los cambios en el uso del suelo. En el extremo occidental de la Llanura Pampeana Seca (LPS) en Argentina, se encuentra un sistema de más de 100 lagunas poco profundas de notable estabilidad. Estas lagunas presentan una baja salinidad en comparación con las situadas en la Llanura Pampeana Húmeda, a pesar de estar sujetas a una mayor tasa de evaporación. Además, constituyen el principal suministro de agua para el ser humano desde épocas prehispánicas hasta la actualidad. Con el fin de establecer las interacciones estacionales entre el agua superficial/subterránea y las condiciones hidrológicas que garantizan la existencia de estas lagunas, se utilizaron isótopos estables del en la Laguna Los Pocitos, ubicada en la LPS. Los resultados indican que la composición isotópica del agua superficial está controlada principalmente por la evaporación, incluso en la estación húmeda donde tanto las precipitaciones como la evaporación son mayores. El modelo de balance de masas realizado mediante la utilización de δ18O indica un mayor aporte de agua subterránea a la laguna durante la estación seca (~0.4 m mes−1), en comparación con la estación húmeda (~0.2 m mes−1). Asimismo, se observa una disminución en el nivel de la laguna en la estación húmeda debido al menor aporte de agua subterránea y a la mayor tasa de evaporación. En base a la proporción de agua que ingresa a la laguna y a las pérdidas por evaporación, Los Pocitos corresponde a una laguna de flujo continuo con un corto tiempo de residencia del agua (~0.47 años). Estas condiciones hidrológicas, junto con los aportes de agua dulce procedentes de una duna situada en la margen occidental de dicha laguna, determinan la existencia de este relativamente estable cuerpo de agua dulce en la LPS, a pesar de las altas tasas de evaporación registradas.
摘要
认识半干旱地区珍稀淡水水体的水文功能至关重要, 尤其是在那些受到诸如土地利用变化的人类活动影响地区。在阿根廷潘帕斯平原西部干燥区, 100 多个具有显著稳定的浅水湖形成了一个系统。与位于更潮湿地区的湖泊相比, 这些湖泊的盐度较低。这个系统是从前西班牙时代到现在的人类主要水资源。利用稳定同位素建立季节性地表水/地下水相互作用和干燥的潘帕斯平原 (DPP) 湖(即Los Pocitos湖)的水文条件, 以了解保证这种资源的机制。结果表明, 蒸发主要控制湖水的同位素组成, 超过了雨季(但也是蒸发最多的)较高降雨量补给的影响。δ18O 质量平衡模型表明, 与雨季(~0.2 m month−1)相比, 旱季(~0.4 m month−1)有更多的地下水流入湖泊。由于地下水径流量最低, 蒸发率最大, 雨季湖水位下降。根据进入湖泊的水量和通过蒸发排泄水量的比例, Los Pocitos 湖对应于水停留时间较短(约0.47 年)的流经湖泊。这些水文条件以及来自湖西边沙丘的淡水补给, 造成了在蒸发率很高的DPP 中存在这个相对稳定的淡水湖。
Resumo
Compreender o funcionamento hidrológico dos escassos corpos de água doce de regiões semiáridas é fundamental, especialmente nas áreas afetadas por atividades antrópicas que envolvem mudanças no uso da terra. Na borda ocidental árida das Planícies dos Pampas Argentinos, ocorre um sistema de mais de 100 lagos rasos de notável estabilidade. Esses lagos apresentam baixa salinidade em comparação com aqueles localizados na faixa mais úmida. Este sistema tem sido o principal recurso hídrico para o homem desde a época pré-hispânica até o presente. Isótopos estáveis foram usados para estabelecer as interações sazonais água superficial/subterrânea e as condições hidrológicas em um lago da Planície Árida dos Pampas (PAP), por ex. o Lago Los Pocitos, para entender o mecanismo que garante tal recurso. Os resultados indicam que a evaporação controla principalmente a composição isotópica da água do lago, superando o efeito de maiores entradas de chuva durante a estação úmida (mas também mais evaporativa). O modelo de balanço de massa δ18O indica maior influxo de águas subterrâneas para o lago durante a estação seca (~0.4 m mês−1) em comparação com a estação chuvosa (~0.2 m mês−1). O nível do lago diminuiu na estação chuvosa devido ao menor fluxo de águas subterrâneas e à maior taxa de evaporação. Com base na proporção de água que entra no lago e sai por evaporação, Los Pocitos corresponde a um lago de fluxo direto com um curto tempo de residência na água (~ 0.47 anos). Essas condições hidrológicas, junto com as entradas de água doce da duna localizada na margem oeste do lago, determinam a existência deste lago de água doce relativamente estável na PAP, onde altas taxas de evaporação são registradas.
This is a preview of subscription content, access via your institution.





References
Ala-aho P, Rossi PM, Kløve B (2013) Interaction of esker groundwater with headwater lakes and streams. J Hydrol 500:144-156. https://doi.org/10.1016/j.jhydrol.2013.07.014
Arnoux M, Barbecot F, Gibert-Brunet E, Gibson JJ, Rosa E, Noret A, Monvoisin G (2017a) Geochemical and isotopic mass balances of kettle lakes in southern Quebec (Canada) as tools to document variations in groundwater quantity and quality. Environ Earth Sci 76(3). https://doi.org/10.1007/s12665-017-6410-6
Arnoux M, Gibert-Brunet E, Barbecot F, Guillon S, Gibson JJ, Noret A (2017b) Interactions between groundwater and seasonally ice-covered lakes: using water stable isotopes and radon-222 multilayer mass balance models. Hydrol Process 31(14). https://doi.org/10.1002/hyp.11206
Blarasin M, Cabrera A, Matteoda E, Aguirre M, Giuliano Albo J, Becher Quinodoz F, Maldonado L, Frontera H, (2014) Recursos hídricos subterráneos, parte II: aspectos geoquímicos, isotópicos, contaminación y aptitudes de uso [Groundwater resources, part II: geochemical, isotopic, contamination and usability aspects]. In: Martino R, Guereschi A (eds) Report of the XIX Argentine Geological Congress: Geology and Natural Resources of the Province of Córdoba. XIX Cong Geol Arg Actas. https://doi.org/10.13140/2.1.4625.184. pp 1263-1287
Blarasin M, Cabrera A, Matiatos I, Becher Quinodóz F, Giuliano Albo J, Lutri V, Matteoda E, Panarello H (2020) Comparative evaluation of urban versus agricultural nitrate sources and sinks in an unconfined aquifer by isotopic and multivariate analyses. Sci Total Environ 741. https://doi.org/10.1016/j.scitotenv.2020.140374
Bocanegra E, Quiroz Londoño OM, Martínez DE, Romanelli A, London OMQ, Romanelli A (2013) Quantification of the water balance and hydrogeological processes of groundwater-lake interactions in the Pampa plain, Argentina. Environ Earth Sci 68(8):2347-2357. https://doi.org/10.1007/s12665-012-1916-4
Bogino SM, Jobbágy EG (2011) Climate and groundwater effects on the establishment, growth and death of Prosopis caldenia trees in the pampas (Argentina). For Ecol Manag 262(9). https://doi.org/10.1016/j.foreco.2011.07.032
Bouchez C, Goncalves J, Deschamps P, Vallet-Coulomb C, Hamelin B, Doumnang J-C, Sylvestre F (2016) Hydrological, chemical, and isotopic budgets of Lake Chad: a quantitative assessment of evaporation, transpiration and infiltration fluxes. Hydrol Earth Syst Sci 20(4). https://doi.org/10.5194/hess-20-1599-2016
Brock TD, Lee DR, Janes D, Winek D (1982) Groundwater seepage as a nutrient source to a drainage lake: Lake Mendota, Wisconsin. Water Res 16(7):1255-1263. https://doi.org/10.1016/0043-1354(82)90144-0
Brooks JR, Gibson JJ, Birks SJ, Weber MH, Rodecap KD, Stoddard JL (2014) Stable isotope estimates of evaporation: inflow and water residence time for lakes across the United States as a tool for national lake water quality assessments. Limnol Oceanogr 59(6). https://doi.org/10.4319/lo.2014.59.6.2150
Cabrera A, Blarasin M, Bécher Quinodoz F, Lutri V, Felizzia J, Eric C, Matteoda E, Giacobonne D (2019) The local meteoric water line in the Pampean Plain of Córdoba, Argentina. J Appl Geol Geophys 7:19-25
Cabrera A, Blarasin M, Dapeña C, Maldonado L (2013) Composición físico-química e isotópica de precipitaciones del Sur de Córdoba [Physico-chemical and isotopic composition of precipitation in the south of Córdoba]. In: González N, Kruse E, Trovatto M, Laurencena P (eds) Agua subterránea recurso estratégico Tomo II. VIII Cong. Arg. de Hidrogeología y VI Seminario Latinoamericano sobre Temas Actuales de la Hidrología Subterránea. Editorial of the National University of La Plata, La Plata, Argentina, pp 35-42
Campodonico VA, Dapeña C, Pasquini AI, Lecomte KL, Piovano EL (2019) Hydrogeochemistry of a small saline lake: assessing the groundwater inflow using environmental isotopic tracers (Laguna del Plata, Mar Chiquita system, Argentina). J S Am Earth Sci 95:102305. https://doi.org/10.1016/j.jsames.2019.102305
Cao X, Wu P, Zhou S, Han Z, Tu H, Zhang S (2018) Seasonal variability of oxygen and hydrogen isotopes in a wetland system of the Yunnan-Guizhou plateau, Southwest China: a quantitative assessment of groundwater inflow fluxes. Hydrogeol J 26(1):215-231. https://doi.org/10.1007/s10040-017-1635-8
Ceci JH, Coronado MD (1981) Recursos hídricos subterráneos [Groundwater resources]. In: Irigoyen M (ed) Geología de La Provincia de San Luis, VIII Cong. Geol. Arg., San Luis, Argentina, pp 301-322
Colazo JC (2012) Recursos físicos y ambientales de los territorios de la provincia de San Luis [Physical and environmental resources of the San Luis province territories]. INTA Ediciones, INTA, Buenos Aires, Argentina
Contreras S, Santoni CS, Jobbágy EG (2013) Abrupt watercourse formation in a semiarid sedimentary landscape of Central Argentina: the roles of forest clearing, rainfall variability and seismic activity. Ecohydrology 6(5):794-805. https://doi.org/10.1002/eco.1302
Córdoba FE, Guerra L, Rodríguez CC, Sylvestre F, Piovano EL (2014) Una visión paleolimnológica de la variabilidad hidroclimática reciente en el centro de Argentina: desde la pequeña edad de hielo al siglo XXI [A Paleolimmological perspective of recent hydroclimate variability in central Argentina: from the Little Ice Age to the 21st century]. Lat Am J Sedimentol Basin Anal 21(2):139-163
Craig H, Gordon LI (1965) Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. In: Tongiorgi E (ed) Stable isotopes in oceanographic studies and Paleotemperatures. Laboratory Di Geologia Nucleare, Pisa, Italy, pp 9-130
Drago E, Quiros R (1996) The hydrochemistry of the inland waters of Argentina: a review. Int J Salt Lake Res 4:315-325. https://doi.org/10.1007/BF01999115
Echegoyen CV, Lecomte KL, Campodonico VA, Yaciuk PA, Jobbágy EG, Heider G, Sepúlveda LD, Pasquini AI, De Micco G, Bohé AE (2021) Use of radon-222 to assess the groundwater inflow in a phreatic lake of a dune field (San Luis, Argentine). Bol Inst Geol Min Esp 132(1-2):99-106. https://doi.org/10.21701/bolgeomin.132.1-2.010
Fernández Cirelli A, Miretzky P (2004) Ionic relations: a tool for studying hydrogeochemical processes in Pampean shallow lakes (Buenos Aires, Argentina). Quat Int 114(1):113-121. https://doi.org/10.1016/S1040-6182(03)00046-6
Finlay JC, Small GE, Sterner RW (2013) Human influences on nitrogen removal in lakes. Science 342(6155):247-250. https://doi.org/10.1126/science.1242575
Fontes JC (1980) Environmental isotopes in groundwater hydrology. Vol. 1. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry. Elsevier, Amsterdam, pp 75-140
Gat JR (2010) Isotope hydrology: a study of the water cycle. Imperial College Press, London. https://doi.org/10.1142/p027
Gat JR (1995) Stable isotopes of fresh and Saline Lakes. In: Lerman A, Imboden DM, Gat JR (eds) Physics and Chemistry of Lakes, Springer, Berlin, pp 139-165. https://doi.org/10.1007/978-3-642-85132-2_5
Gat JR (1996) Oxygen and hydrogen isotopes in the hydrologic cycle. Annu Rev Earth Planet Sci 24(1):255-262. https://doi.org/10.1146/annurev.earth.24.1.225
George R, McFarlane D, Nulsen B (1997) Salinity threatens the viability of agriculture and ecosystems in Western Australia. Hydrogeol J 5(1):6-21. https://doi.org/10.1007/s100400050103
Gibson JJ, Edwards TWD (2002) Regional water balance trends and evaporation-transpiration partitioning from a stable isotope survey of lakes in northern Canada. Glob Biogeochem Cycles 16(2):10-1-10-14. https://doi.org/10.1029/2001GB001839
Gibson JJ, Edwards TWD, Bursey GG, Prowse TD (1993) Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in northern Canada. Hydrol Res 24(2-3):79-94. https://doi.org/10.2166/nh.1993.0015
Gibson JJ, Prepas EE, McEachern P (2002) Quantitative comparison of lake throughflow, residency, and catchment runoff using stable isotopes: modelling and results from a regional survey of boreal lakes. J Hydrol 262(1-4):128-144. https://doi.org/10.1016/S0022-1694(02)00022-7
Gibson JJ, Birks SJ, Edwards TWD (2008) Global prediction of δA and δ2H-δ18O evaporation slopes for lakes and soil water accounting for seasonality. Glob Biogeochem Cycles 22(2):1-12. https://doi.org/10.1029/2007GB002997
Gibson JJ, Birks SJ, Yi Y (2016) Stable isotope mass balance of lakes: a contemporary perspective. Quat Sci Rev 131:316-328. https://doi.org/10.1016/j.quascirev.2015.04.013
Gonfiantini R (1978) Standards for stable isotope measurements in natural compounds. Nature 271(5645):534-536. https://doi.org/10.1038/271534a0
Gonfiantini R (1986) Environmental isotopes in lake studies. In: Fritz P, Fontes J (eds) Handbook of environmental isotope geochemistry. Elsevier, New York, pp 113-168. https://doi.org/10.1016/B978-0-444-42225-5.50008-5
Guerra L, Piovano EL, Córdoba FE, Sylvestre F, Damatto S (2015) The hydrological and environmental evolution of shallow Lake Melincué, central Argentinean Pampas, during the last millennium. J Hydrol 529:570-583. https://doi.org/10.1016/j.jhydrol.2015.01.002
Gurrieri JT, Furniss G (2004) Estimation of groundwater exchange in alpine lakes using non-steady mass-balance methods. J Hydrol 297(1-4):187-208. https://doi.org/10.1016/j.jhydrol.2004.04.021
Harvey FE, Swinehart JB, Kurtz TM (2007) Ground water sustenance of Nebraska’s unique Sand Hills peatland fen ecosystems. Groundwater 45(2):218-234. https://doi.org/10.1111/j.1745-6584.2006.00278.x
Heider G, Jobbágy EG, Tripaldi A (2019) Uso del espacio semiárido por poblaciones prehispánicas: el papel de los paisajes de dunas como eco-refugios en el Centro de Argentina [Use of semi-arid space by prehispanic population: the role of dune landscapes as eco-refuges in Central Argentina]. Bol Soc Geol Mex 71(2):229-248. https://doi.org/10.18268/BSGM2019v71n2a1
Hofmann H, Knöller K, Lessmann D (2008) Mining lakes as groundwater-dominated hydrological systems: assessment of the water balance of mining Lake Plessa 117 (Lusatia, Germany) using stable isotopes. Hydrol Process 22(23):4620-4627. https://doi.org/10.1002/hyp.7071
Horita J, Wesolowski DJ (1994) Liquid-vapor fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature. Geochemica Cosmochim Acta 58(16):3425-3437. https://doi.org/10.1016/0016-7037(94)90096-5
Iriondo M, Kröhling DM (1995) El sistema eólico pampeano [The Pampean Aeolian system]. Comunicaciones Museo Provincial de Ciencias Naturales. Comunicaciones Museo Provincial de Ciencias Naturales “Florentino Ameghino,” Santa Fe
Iriondo M, Brunetto E, Kröhling D (2009) Historical climatic extremes as indicators for typical scenarios of Holocene climatic periods in the Pampean Plain. Palaeogeogr Palaeoclimatol Palaeoecol 283(3-4):107-119. https://doi.org/10.1016/j.palaeo.2009.09.005
Jayawickreme DH, Santoni CS, Kim JH, Jobbágy EG, Jackson RB (2011) Changes in hydrology and salinity accompanying a century of agricultural conversion in Argentina. Ecol Appl 21(7):2367-2379. https://doi.org/10.1890/10-2086.1
Jobbágy EG, Nosetto MD, Villagra PE, Jackson RB (2011) Water subsidies from mountains to deserts: their role in sustaining groundwater-fed oases in a sandy landscape. Ecol Appl 21(3):678-694
Jobbágy EG, Lorenzo S, Buono N, Páez R, Diaz Y, Marchesini V, Nosetto MD (2021) Plants versus streams: their groundwater-mediated competition at “El Morro,” a developing catchment in the dry plains of Argentina. Hydrol Process 35(5). https://doi.org/10.1002/hyp.14188
Kidmose J, Nilsson B, Engesgaard P, Søndergaard M, Jeppesen E (2013) Focused groundwater discharge of phosphorus to a eutrophic seepage Lake (lake Væng, Denmark): implications for lake ecological state and restoration. Hydrogeol J 21(8):1787-1802. https://doi.org/10.1007/s10040-013-1043-7
Krabbenholft DP, Bowser CJ, Anderson MP, Valley JW (1990) Estimating groundwater exchange with lakes: 1. the stable isotope mass balance. Water Resour Res 26(10):2445-2453. https://doi.org/10.1029/WR026i010p02445
Krabbenhoft DP, Bowser CJ, Kendall C, Gat JR (1994) Use of Oxygen-18 and deuterium to assess the hydrology of groundwater-Lake systems. In: Baker LA (ed) Environmental chemistry of lakes and reservoirs, advances in chemistry, Washington, DC, pp 67-90. https://doi.org/10.1021/ba-1994-0237.ch003
Leblanc MJ, Favreau G, Massuel S, Tweed SO, Loireau M, Cappelaere B (2008) Land clearance and hydrological change in the Sahel: SW Niger. Glob Planet Change 61(3-4):135-150. https://doi.org/10.1016/j.gloplacha.2007.08.011
Lewandowski J, Meinikmann K, Nützmann G, Rosenberry DO (2015) Groundwater-the disregarded component in lake water and nutrient budgets, part 2: effects of groundwater on nutrients. Hydrol Process 29(13):2922-2955. https://doi.org/10.1002/hyp.10384
Liao F, Wang G, Shi Z, Cheng G, Kong Q, Mu W, Guo L (2018) Estimation of groundwater discharge and associated chemical fluxes into Poyang Lake, China: approaches using stable isotopes (δD and δ18O) and radon. Hydrogeol J 26(5):1625-1638. https://doi.org/10.1007/s10040-018-1793-3
Licursi M, Gómez N, Sabater S (2016) Effects of nutrient enrichment on epipelic diatom assemblages in a nutrient-rich lowland stream, Pampa Region, Argentina. Hydrobiologia 766(1):135-150. https://doi.org/10.1007/s10750-015-2450-7
Liu C, Liu J, Wang XS, Zheng C (2016) Analysis of groundwater-lake interaction by distributed temperature sensing in Badain Jaran Desert, Northwest China. Hydrol Process 30(9):1330-1341. https://doi.org/10.1002/hyp.10705
Liu H, Yin Y, Piao S, Zhao F, Engels M, Ciais P (2013) Disappearing Lakes in semiarid northern China: drivers and environmental impact. Environ Sci Technol 47(21):12107-12114. https://doi.org/10.1021/es305298q
Marchesini VA, Nosetto MD, Houspanossian J, Jobbágy EG (2020) Contrasting hydrological seasonality with latitude in the south American Chaco: the roles of climate and vegetation activity. J Hydrol 587. https://doi.org/10.1016/j.jhydrol.2020.124933
Meinikmann K, Hupfer M, Lewandowski J (2015) Phosphorus in groundwater discharge: a potential source for lake eutrophication. J Hydrol 524:214-226. https://doi.org/10.1016/j.jhydrol.2015.02.031
Miretzky P, Conzonno V, Fernández Cirelli A (2000) Hydrochemistry of pampasic ponds in the lower stream bed of Salado River drainage basin, Argentina. Environ Geol 39(8):951-956. https://doi.org/10.1007/s002549900063
Miretzky P, Conzonno V, Fernández Cirelli A (2001) Geochemical mechanism controlling pampasic ponds hydrochemistry: Salado River Drainage Basin, Argentina. Rev Bras Recur Hídricos 6:29-39. https://doi.org/10.21168/rbrh.v6n4.p29-39
Montalván FJ, Heredia J, Ruiz JM, Pardo-Igúzquiza E, García de Domingo A, Elorza FJ (2017) Hydrochemical and isotopes studies in a hypersaline wetland to define the hydrogeological conceptual model: Fuente de Piedra Lake (Malaga, Spain). Sci Total Environ 576:335-346. https://doi.org/10.1016/j.scitotenv.2016.10.048
Nosetto MD, Paez RA, Ballesteros SI, Jobbágy EG (2015) Higher water-table levels and flooding risk under grain vs. livestock production systems in the subhumid plains of the pampas. Agric Ecosyst Environ 206:60-70. https://doi.org/10.1016/j.agee.2015.03.009
Oliveira Ommen DA, Kidmose J, Karan S, Flindt MR, Engesgaard P, Nilsson B, Andersen FØ (2012) Importance of groundwater and macrophytes for the nutrient balance at oligotrophic Lake Hampen, Denmark. Ecohydrology 5(3):286-296. https://doi.org/10.1002/eco.213
Petermann E, Gibson JJ, Knöller K, Pannier T, Weiß H, Schubert M (2018) Determination of groundwater discharge rates and water residence time of groundwater-fed lakes by stable isotopes of water (18O, 2H) and radon (222Rn) mass balances. Hydrol Process 32(6):805-816. https://doi.org/10.1002/hyp.11456
Poca M, Nosetto MD, Ballesteros S, Castellanos G, Jobbágy EG (2020) Isotopic insights on continental water sources and transport in the mountains and plains of southern South America. Isot Environ Health Stud 56(5-6):586-605. https://doi.org/10.1080/10256016.2020.1819264
Quiroz Londoño OM, Romanelli A, Martínez DE, Massone HE (2020) Water exchange processes estimation in a temperate shallow lake based on water stable isotope analysis. Isot Environ Health Stud 56(5-6):465-479. https://doi.org/10.1080/10256016.2020.1803857
Rice EW, Baird RB, Eaton AD, Clesceri LS (2012) Standard methods for the examination of water and wastewater, 22nd edn. American Public Health Association, Washington, DC
Romanelli A, Quiroz Londoño OM, Martínez DE, Massone HE, Escalante AH (2014) Hydrogeochemistry Wet Pampa Plain, Argentina. Environ Earth Sci 71(4):1953-1966. https://doi.org/10.1007/s12665-013-2601-y
Romanelli A, Soto DX, Matiatos I, Martínez DE, Esquius S (2020) A biological and nitrate isotopic assessment framework to understand eutrophication in aquatic ecosystems. Sci Total Environ 715. https://doi.org/10.1016/j.scitotenv.2020.136909
Rosenberry DO, Winter TC, Buso DC, Likens GE (2007) Comparison of 15 evaporation methods applied to a small mountain lake in the northeastern USA. J Hydrol 340(3-4):149-166. https://doi.org/10.1016/j.jhydrol.2007.03.018
Rosenberry DO, Lewandowski J, Meinikmann K, Nützmann G (2015) Groundwater-the disregarded component in lake water and nutrient budgets, part 1: effects of groundwater on hydrology. Hydrol Process 29(13):2895-2921. https://doi.org/10.1002/hyp.10403
Rossman NR, Zlotnik VA, Rowe CM (2019) Simulating lake and wetland areal coverage under future groundwater recharge projections: the Nebraska Sand Hills system. J Hydrol 576:185-196. https://doi.org/10.1016/j.jhydrol.2019.06.046
Sacks LA, Lee TM, Swancar A (2014) The suitability of a simplified isotope-balance approach to quantify transient groundwater-lake interactions over a decade with climatic extremes. J Hydrol 519:3042-3053. https://doi.org/10.1016/j.jhydrol.2013.12.012
Santoni CS, Jobbágy EG, Contreras S (2010) Vadose zone transport in dry forests of Central Argentina: role of land use. Water Resour Res. 46(10). https://doi.org/10.1029/2009WR008784
Scanlon BR, Reedy RC, Stonestrom DA, Prudic DE, Dennehy KF (2005) Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Glob Chang Biol 11(10):1577-1593. https://doi.org/10.1111/j.1365-2486.2005.01026.x
Shaw GD, White ES, Gammons CH (2013) Characterizing groundwater-lake interactions and its impact on lake water quality. J Hydrol 492:69-78. https://doi.org/10.1016/j.jhydrol.2013.04.018
Shaw GD, Mitchell KL, Gammons CH (2017) Estimating groundwater inflow and leakage outflow for an intermontane lake with a structurally complex geology: Georgetown Lake in Montana, USA. Hydrogeol J 25(1):135-149. https://doi.org/10.1007/s10040-016-1500-1
Stets EG, Winter TC, Rosenberry DO, Striegl RG (2010) Quantification of surface water and groundwater flows to open- and closed-basin lakes in a headwaters watershed using a descriptive oxygen stable isotope model. Water Resour Res 46(3):1-16. https://doi.org/10.1029/2009WR007793
Tao Y, Yuan Z, Fengchang W, Wei M (2013) Six-decade change in water chemistry of large freshwater Lake Taihu, China. Environ Sci Technol 47(16):9093-9101. https://doi.org/10.1021/es401517h
Tong Y, Li J, Qi M, Zhang X, Wang M, Liu X, Zhang W, Wang X, Lu Y, Lin Y (2019) Impacts of water residence time on nitrogen budget of lakes and reservoirs. Sci Total Environ 646:75-83. https://doi.org/10.1016/j.scitotenv.2018.07.255
Tripaldi A, Forman SL (2007) Geomorphology and chronology of Late Quaternary dune fields of western Argentina. Palaeogeogr Palaeoclimatol Palaeoecol 251(2):300-320. https://doi.org/10.1016/j.palaeo.2007.04.007
Tripaldi A, Ciccioli PL, Alonso MS, Forman SL (2010) Petrography and geochemistry of late Quaternary dune fields of western Argentina: provenance of aeolian materials in southern South America. Aeolian Res 2:33-48. https://doi.org/10.1016/j.aeolia.2010.01.001
Tripaldi A, Zárate MA, Forman SL, Doyle ME, Ciccioli PL, Badger T, Doyle ME, Ciccioli PL (2013) Geological evidence for a drought episode in the western pampas (Argentina, South America) during the early-mid 20th century. The Holocene 23(12):1731-1746. https://doi.org/10.1177/0959683613505338
Turner JV, Townley LR (2006) Determination of groundwater flow-through regimes of shallow lakes and wetlands from numerical analysis of stable isotopes and chloride tracer distribution patterns. J Hydrol 320(3-4):451-483. https://doi.org/10.1016/j.jhydrol.2005.07.050
Turner KW, Wolfe BB, Edwards TWD (2010) Characterizing the role of hydrological processes on lake water balances in the Old Crow Flats, Yukon territory, Canada, using water isotope tracers. J Hydrol 386(1-4):103-117. https://doi.org/10.1016/j.jhydrol.2010.03.012
Viglizzo EF, Jobbágy EG (2010) Expansión de la Frontera Agropecuaria en Argentina y su Impacto Ecológico-Ambiental [Expansion of the Agricultural Frontier in Argentina and its Ecological-Environmental Impact]. INTA Ediciones, Buenos Aires, Argentina
Vilanova I, Schittek K, Geilenkirchen M, Schäbitz F, Schulz W (2015) Last millennial environmental reconstruction based on a multi-proxy record from Laguna Nassau, Western pampas, Argentina. Neues Jahrb Geol Paläontologie 277(2):209-224. https://doi.org/10.1127/njgpa/2015/0502
Wetzel RG (2001) Limnology: Lake and river ecosystems, 3rd edn. Springer, Heidelberg, Germany. https://doi.org/10.1016/C2009-0-02112-6
Williams WD (1999) Salinisation: a major threat to water resources in the arid and semi-arid regions of the world. Lakes Reserv Res Manag 4(3-4):85-91. https://doi.org/10.1046/j.1440-1770.1999.00089.x
Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139. https://doi.org/10.3133/cir1139
Wolfe BB, Karst-Riddoch TL, Hall RI, Edwards TWD, English MC, Palmini R, McGowan S, Leavitt PR, Vardy SR (2007) Classification of hydrological regimes of northern floodplain basins (Peace-Athabasca Delta, Canada) from analysis of stable isotopes (δ18O, δ2H) and water chemistry. Hydrol Process 21(2):151-168. https://doi.org/10.1002/hyp.6229
Zárate MA, Tripaldi A (2012) The aeolian system of central Argentina. Aeolian Res 3(4):401-417. https://doi.org/10.1016/j.aeolia.2011.08.002
Acknowledgements
The authors wish to acknowledge the inhabitants and landowners where the lakes are located. We also thank G. Heider for his assistance in field work. C. Echegoyen acknowledges a doctoral fellowship from CONICET.
Funding
This work was funded by the Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT, PICT 2017-2026); the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 11220170100088CO); and the the Universidad Nacional de Córdoba (SeCyT-UNC, 336-20,180,100,385-CB).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Echegoyen, C.V., Campodonico, V.A., Lecomte, K.L. et al. Surface-water/groundwater exchange in a sand dune lake in the Dry Pampean Plain, Argentina: stable isotopic evidence. Hydrogeol J 30, 783–796 (2022). https://doi.org/10.1007/s10040-022-02449-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10040-022-02449-w
Keywords
- Groundwater/surface-water relations
- Environmental tracers
- Mass balance method
- Water residence time
- Argentina