Skip to main content
Log in

The extreme well-loss component of drawdown in two deep artesian wells in Israel

La composante des pertes de charges hydrauliques extrêmes associées au forage dans le rabattement de deux puits artésiens profonds en Israël

La componente de pérdida de carga hidráulica extrema en dos pozos artesianos profundos en Israel

以色列两口深自流井降深的极端井损分量

Componente de perda extrema em poço por rebaixamento em dois poços artesianos profundos em Israel

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The water-level drawdown in pumping wells is the sum of two components: aquifer loss and well loss. The latter results from mostly turbulent and nonlaminar flow in and around the well. In a properly designed well, the well-loss component is usually much smaller than the aquifer loss. Analyzing step-drawdown tests of two deep (1,397 and 878 m) artesian wells drilled in a fractured carbonate aquifer in Israel, revealed exceptional proportions between the two drawdown components. Despite the high artesian flows and the fact that the two wells are properly constructed, most of the drawdown (96–99% and 82–90% of the total drawdown) is attributable to well loss. Accordingly, the well efficiencies are very low and decrease as flow increases. The anomalous values of the well-loss component are also reflected in the wells’ hydrographs; each opening and closing of the artesian flow results in an immediate jump in the head pressure. As far as is known, such unusual proportions have never been encountered in other water wells. The vertical flow velocities within the casing of both wells are very high, and the Reynolds numbers confirm turbulent flow. The combination of flow in fractures and high frictional head loss within the well pipes are the factors that enable this exceptionally high well loss and low efficiency in these high-discharge wells. The high frictional head loss, calculated by applying the Darcy-Weisbach equation, is the result of great well depths and turbulent rapid vertical flow up to the surface in a narrow and long casing.

Résumé

Le rabattement du niveau d’eau dans des puits de pompage est la somme de deux composantes: les pertes de charge liées à l’aquifère et celles associées au forage. Ces dernières résultent d’un écoulement essentiellement turbulent et non laminaire au sein et autour du puits. Dans un puits correctement conçu, la composante des pertes de charge associées au puits est généralement beaucoup plus faible que les pertes de chargé liées à l’aquifère. L’analyse des essais de rabattement par paliers de deux puits artésiens profonds (1,397 et 878 m) forés dans un aquifère carbonaté fracturé en Israël, a révélé des proportions exceptionnelles entre les deux composantes du rabattement. Malgré les débits artésiens élevés et le fait que les deux puits sont correctement construits, la majeure partie du rabattement (96–99% et 82–90% du rabattement total) est attribuable aux pertes de charge associées au puits. En conséquence, les rendements des puits sont très faibles et diminuent lorsque le débit augmente. Les valeurs anormales de la composante des pertes de charge associées au puits se reflètent également dans les hydrogrammes des puits; chaque ouverture et fermeture de l’écoulement artésien entraîne une augmentation immédiate de la charge hydraulique. Pour autant que l’on sache, des proportions aussi inhabituelles n’ont jamais été rencontrées dans d’autres puits d’eau. Les vitesses d’écoulement verticales dans le tubage des deux puits sont très élevées, et les nombres de Reynolds confirment un écoulement turbulent. La combinaison de l’écoulement dans les fractures et de la perte de charge par une friction élevée dans le tubage du puits sont les facteurs qui ont pour conséquence une perte de charge exceptionnellement élevée et une faible efficacité dans ces puits à haut débit. La perte de charge par friction élevée, calculée en appliquant l’équation de Darcy-Weisbach, résulte de la grande profondeur des puits et d’un écoulement vertical rapide et turbulent jusqu’à la surface dans un tubage étroit et long.

Resumen

El descenso del nivel del agua en los pozos de bombeo es la suma de dos componentes: las pérdidas de carga del acuífero y del pozo. Esta última es el resultado de un flujo principalmente turbulento y no laminar dentro y alrededor del pozo. En un pozo correctamente diseñado, el componente de pérdida del pozo suele ser mucho menor que la pérdida del acuífero. El análisis de las pruebas de descenso escalonado de dos pozos artesianos profundos (1,397 y 878 m) perforados en un acuífero carbonatado fracturado en Israel, reveló proporciones excepcionales entre los dos componentes del descenso. A pesar de los elevados caudales artesianos y de que los dos pozos están correctamente construidos, la mayor parte de la reducción del nivel de agua (96–99% y 82–90% de la reducción total) es atribuible a las pérdidas del pozo. En consecuencia, los rendimientos de los pozos son muy bajos y disminuyen a medida que aumenta el caudal. Los valores anómalos del componente de pérdida del pozo también se reflejan en los hidrogramas de los pozos; cada apertura y cierre del flujo artesiano provoca un salto inmediato en la presión de la carga hidráulica. Por lo que se sabe, nunca se han encontrado proporciones tan inusuales en otros pozos de agua. Las velocidades verticales del flujo dentro del revestimiento de ambos pozos son muy altas, y los números de Reynolds confirman un flujo turbulento. La combinación del flujo en las fracturas y la alta pérdida de carga por fricción dentro de las tuberías del pozo son los factores que permiten esta pérdida excepcionalmente alta y la baja eficiencia en estos pozos de alta descarga. La elevada pérdida de carga por fricción, calculada mediante la aplicación de la ecuación de Darcy-Weisbach, es el resultado de las grandes profundidades de los pozos y del rápido flujo vertical turbulento hasta la superficie en una tubería de revestimiento larga y estrecha.

摘要

抽水井的水位下降包括两个部分: 含水层损失和井损失。后者主要由井内和井周围的湍流和非层流引起。在设计合理的井中, 井损部分通常比含水层损失小得多。以色列裂隙碳酸盐含水层中钻探的两口深 (1,397 米和 878 米) 自流井的分段降深试验分析, 揭示了两种降组分之间的特殊比例。尽管自流井流量很大, 而且两口井按规范修建, 但大部分降深 (总降深的 96–99% 和 82–90%) 归因于井损。因此, 井效率非常低并且随着流量增加而降低。井损分量的异常值也反映在井的水文过程线中; 自流井的每次打开和关闭都会导致水头压力的瞬时跳跃。据目前了解, 这种不寻常的比例在其他水井中从未遇到过。两口井套管内的垂直流速都非常高, 雷诺数证实了湍流。裂隙中的流动和井管内的高摩擦水头损失相结合是导致这些高排泄井出现异常高井损和低效率的因素。通过应用 Darcy-Weisbach 方程计算的高摩擦水头损失是大井深和湍流快速垂直流沿狭窄而长的套管上升到地面的结果。

Resumo

O rebaixamento do nível da água em poços de bombeamento é a soma de dois componentes: perda de aquífero e de poço. O último resulta do fluxo principalmente turbulento e não laminar dentro e ao redor do poço. Em um poço projetado corretamente, o componente de perda de poço é geralmente muito menor do que a perda de aquífero. A análise de testes de rebaixamento de dois poços artesianos profundos (1,397 e 878 m) perfurados em um aquífero carbonático fraturado em Israel, revelou proporções excepcionais entre os dois componentes de rebaixamento. Apesar dos altos fluxos e do fato de que os dois poços serem construídos corretamente, a maior parte do rebaixamento (96–99% e 82–90% do rebaixamento total) é atribuível à perda do poço. Consequentemente, as eficiências dos poços são muito baixas e diminuem conforme o fluxo aumenta. Os valores anômalos do componente de perda de poço também são refletidos nos hidrogramas dos poços; cada abertura e fechamento do fluxo artesiano resulta em um salto imediato na carga hidráulica. Até onde se sabe, tais proporções incomuns nunca foram encontradas em outros poços. As velocidades de fluxo vertical dentro do revestimento de ambos os poços são muito altas e os números de Reynolds confirmam o fluxo turbulento. A combinação de fluxo em fraturas e alta perda de carga por atrito dentro dos tubos do poço são os fatores que permitem essa perda de poço excepcionalmente alta e baixa eficiência nesses poços de alta descarga. A alta perda de carga por atrito, calculada pela aplicação da equação de Darcy-Weisbach, é o resultado de grandes profundidades de poços e fluxo vertical turbulento e rápido até a superfície em um revestimento estreito e longo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abdalla F, Moubark K (2018) Assessment of well performance criteria and aquifer characteristics using step-drawdown tests and hydrogeochemical data, west of Qena area, Egypt. J Afr Earth Sci 138:336–347. https://doi.org/10.1016/j.jafrearsci.2017.11.023

    Article  Google Scholar 

  • Atkinson LC, Gale JE, Dudgeon CR (1994) New insight into the step-drawdown test in fractured-rock aquifers. Appl Hydrogeol 2(1):9–18. https://doi.org/10.1007/s100400050032

    Article  Google Scholar 

  • Avci CB, Ciftci E, Sahin AU (2010) Identification of aquifer and well parameters from step-drawdown tests. Hydrogeol J 18(7):1591–1601

    Article  Google Scholar 

  • Barker JA, Herbert R (1992) A simple theory for estimating well losses: with application to test wells in Bangladesh. Appl Hydrogeol 0/92:20–31

    Article  Google Scholar 

  • Bierschenk WH (1963) Determining well efficiency by multiple step-drawdown tests. Int. Assoc. Sci. Hydrol., Publ. 64, IASH, Berkeley, CA, pp 493–507

  • Butler SS (1957) Engineering hydrology. Prentice-Hall, Englewood Cliffs, NJ, 356 pp

  • Chachadi AG, Mishra GC (1992) Analysis of unsteady flow to a large-diameter well experiencing well loss. Groundwater 30(3):369–375. https://doi.org/10.1111/j.1745-6584.1992.tb02005.x

    Article  Google Scholar 

  • Clark L, Radini M, Bison PL (1988) Borehole restoration methods and their evaluation by step-drawdown tests: the case history of a detailed study in Northern Italy. Q J Eng Geol Hydrogeol 21(4):315–328. https://doi.org/10.1144/GSL.QJEG.1988.021.04.04

    Article  Google Scholar 

  • Driscoll FG (1986) Groundwater and wells, 2nd edn. Johnson Filtration Systems, St. Paul, MN

    Google Scholar 

  • Hamdan AM, Sawires RF (2013) Hydrogeological studies on the Nubian sandstone aquifer in El-Bahariya Oasis, Western Desert, Egypt. Arab J Geosci 6(5):1333–1347. https://doi.org/10.1007/s12517-011-0439-8

    Article  Google Scholar 

  • Houben GJ (2015a) Hydraulics of water wells-flow laws and influence of geometry. Hydrogeol J 23(8):1633–1657. https://doi.org/10.1007/s10040-015-1312-8

    Article  Google Scholar 

  • Houben GJ (2015b) Hydraulics of water wells-head losses of individual components. Hydrogeol J 23(8):1659–1675. https://doi.org/10.1007/s10040-015-1313-7

    Article  Google Scholar 

  • Houben GJ, Wachenhausen J, Morel CRG (2018) Effects of ageing on the hydraulics of water wells and the influence of non-Darcy flow. Hydrogeol J 26(4):1285–1294. https://doi.org/10.1007/s10040-018-1775-5

    Article  Google Scholar 

  • Islam N, Alam MZ, Mahmud MM (2013) Determination of well loss and aquifer loss of new construction deep water well at artesian aquifer in Khulna City, Bangladesh. Recent Trends Civ Eng Technol 3(1):8–13

    Google Scholar 

  • Jacob CE (1947) Drawdown test to determine the effective radius of an artesian well. Trans Am Soc Civ Eng 112:1047–1070, Paper 2321

  • Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. Eos Trans Am Geophys Union 33(4):559–569

    Article  Google Scholar 

  • Kawecki MW (1995) Meaningful interpretation of step-drawdown tests. Groundwater 33(1):23–32. https://doi.org/10.1111/j.1745-6584.1995.tb00259.x

    Article  Google Scholar 

  • Kresic N (1997) Quantitative solutions in hydrogeology and groundwater modeling. CRC, Boca Raton, FL

    Google Scholar 

  • Kruseman GP, De Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands

    Google Scholar 

  • Li Y, Zhou Z, Zhuang C, Huang Y, Wang J (2020) Non-Darcian effect on a variable-rate pumping test in a confined aquifer. Hydrogeol J 28(8):2853–2863. https://doi.org/10.1007/s10040-020-02223-w

    Article  Google Scholar 

  • Menon ES (2015) Transmission pipeline calculations and simulations manual. Elsevier, Amsterdam, 599 pp

  • Miller CT, Weber WJ Jr (1983) Rapid solution of the nonlinear step-drawdown equation. Groundwater 21(5):584–588

    Article  Google Scholar 

  • Mogg JL (1969) Step-drawdown test needs critical review. Groundwater 7(1):28–34. https://doi.org/10.1111/j.1745-6584.1969.tb01265.x

    Article  Google Scholar 

  • Parsons SB (1994) A re-evaluation of well design procedures. Q J Eng Geol Hydrogeol 27:S31–S40

    Article  Google Scholar 

  • Perina T (2021) Flowing well-time-domain solution and inverse problem revisited. Groundwater 59(3):438–442

    Article  Google Scholar 

  • Polak K, Klich J, Kaznowska K (2011) The method of wells’ efficiency estimation. In: Rüde T, Freund A, Wolkersdorfer C (eds) Mine water: managing the challenges, Proceedings of the 11th Congress of the International Mine Water Association (IMWA) 2011, Aachen, Germany, 4–11 September 2011, pp 153–157

  • Roberson JA, Crowe CT (1975) Engineering fluid mechanics. Houghton Mifflin, Boston, MA

    Google Scholar 

  • Rorabaugh MI (1953) Graphical and theoretical analysis of step-drawdown test of artesian well. Proc Am Soc Civil Eng 79(12):1–23

  • Shekhar S (2006) An approach to interpretation of step drawdown tests. Hydrogeol J 14(6):1018–1027. https://doi.org/10.1007/s10040-005-0016-x

    Article  Google Scholar 

  • Sodiki JI, Adigio E (2014) A review on the development and application of methods for estimating head loss components in water distribution pipework. Am J Eng Res (AJER) 3(9):91–96

    Google Scholar 

  • Serpen U, Başel EDK (2015) Optimization of geothermal borehole diameters. Proceedings World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015

  • Stoner RF, Milne DM, Lund PJ (1979) Economic design of wells. Q J Eng Geol Hydrogeol 12:63–78. https://doi.org/10.1144/GSL.QJEG.1979.012.02.01

    Article  Google Scholar 

  • Summa G (2010) A new approach to the step-drawdown test. SA J Radiol 36(3):279–285

    Google Scholar 

  • Trussell RR, Chang M (1999) Review of flow through porous media as applied to head loss in water filters. J Environ Eng 125(11):998–1006

    Article  Google Scholar 

  • Tügel F, Houben GJ, Graf T (2016) How appropriate is the Thiem equation for describing groundwater flow to actual wells? Hydrogeol J 24(8):2093–2101. https://doi.org/10.1007/s10040-016-1457-0

    Article  Google Scholar 

  • Van Lopik JH, Sweijen T, Hartog N, Schotting RJ (2021) Contribution to head loss by partial penetration and well completion: implications for dewatering and artificial recharge wells. Hydrogeol J 29:875–893. https://doi.org/10.1007/s10040-020-02228-5

    Article  Google Scholar 

  • Walton WC (1962) Selected analytical methods for well and aquifer evaluation. Bulletin no. 49, Illinois State Water Survey, Springfield, IL, 85 pp

  • Wendland E (2008) Friction loss correction in flowing well discharge tests. Water Resour Res 44:WO1428. https://doi.org/10.1029/2007WR006365

    Article  Google Scholar 

Download references

Acknowledgements

The monitoring of SH-2 and HT-1 wells was supported by Mei Golan Water Association and Mekorot Water Company, respectively. We wish to thank Mr. Shlomo Ashkenazi for the excellent field work and Dr. Ittai Gavrieli for fruitful discussions. We are most grateful to the two anonymous reviewers and the associate editor for greatly improving the manuscript with their insightful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avihu Burg.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 140 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burg, A., Guttman, J. & Gev, I. The extreme well-loss component of drawdown in two deep artesian wells in Israel. Hydrogeol J 30, 265–281 (2022). https://doi.org/10.1007/s10040-021-02421-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02421-0

Keywords

Navigation