Skip to main content
Log in

Inter-aquifer connectivity between Australia’s Great Artesian Basin and the overlying Condamine Alluvium: an assessment and its implications for the basin’s groundwater management

Connectivité entre les aquifères du Grand Bassin Artésien d’Australie et des alluvions sus-jacents de Condamine: évaluation et leurs implications pour la gestion des eaux souterraines du bassin

Conectividad interacuífera entre la Great Artesian Basin de Australia y la cubierta del aluvión Condamine: una evaluación y sus implicancias para la gestión de las aguas subterráneas de la cuenca

澳大利亚大自流盆地与上覆的Condamine冲积层之间含水层连通性评估及其对流域地下水管理的影响

Conectividade interaquífero entre a Grande Bacia Artesiana da Austrália e o Aluvião Condamine sobrejacente: uma avaliação e suas implicações para a gestão das águas subterrâneas da bacia

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Coal seam gas (CSG), or coal bed methane, developments in sedimentary basins such as the Great Artesian Basin (GAB) in Australia, have the potential to impact on aquifers overlying and underlying the target coal formations. The extent to which this may occur depends upon the degree of hydrogeological connectivity between the coal formations and the surrounding aquifers or aquifer systems, with general implications for groundwater management. In southeast Australia, one such aquifer system, the Condamine Alluvium (CA), overlies the Walloon Coal Measures (WCM), which is a formation of the GAB and also a target for CSG production. To investigate the connectivity between the two systems, multiple lines of investigation were employed involving field investigations, data gathering and analysis (including reinterpretation of geology, multivariate hydrochemistry analysis, regional water-level mapping, drilling and coring across the contact zone, multiple piezometer installations, long-term pumping tests, groundwater-level monitoring and local-scale modelling). The study found a low level of connectivity between the GAB and the overlying CA. A layer of undifferentiated basement clay (referred to as the ‘transition zone’)—a mixture of alluvial clay and weathered basement—provides an effective impediment to flow across the CA and the underlying GAB formations. Results from the study potentially have wider application across the GAB and sedimentary basins where younger alluvial sediments associated with river systems frequently overlie the erosional surface.

Résumé

Les projets de gaz de charbon (CSG) ou de méthane de houille dans les bassins sédimentaires, tels que le Grand Bassin Artésien (GBA) en Australie, ont le potentiel d’impacter les formations aquifères sous- ou sus-jacentes. L’ampleur à laquelle cela peut se produire dépend du degré de connectivité hydrogéologique entre les formations de charbon et les aquifères ou systèmes aquifères environnants, avec des répercussions générales pour la gestion des eaux souterraines. Dans le Sud-Est de l’Australie, un tel. système aquifère, les alluvions de Condamine (CA), coiffe la formation Walloon Coal Measures (WCM), qui est une formation du GBA et également une cible pour la production de CSG. Afin d’examiner la connectivité entre les deux systèmes, une série d’investigations a été mise en œuvre impliquant des études de terrain, la collecte de données et leur analyse (comprenant la réinterprétation de la géologie, l’analyse multivariée de l’hydrochimie, la cartographie de la piézométrie régionale, le forage et le carottage au travers de la zone de contact, l’installation de piézomètres multi-niveaux, des pompages d’essai longue durée, le suivi des niveaux d’eau souterraine et la modélisation à l’échelle locale). L’étude a montré un niveau de connectivité limité entre le GBA et le CA sus-jacent. Une couche d’argile basale indifférenciée (référencée comme “zone de transition”)—mélange d’argiles alluvionnaires et de socle altéré—constitue un obstacle efficace aux écoulements au travers des formations du CA et du GBA sous-jacent. Les résultats de l’étude ont potentiellement des implications plus larges dans le GBA et d’autres bassins sédimentaires pour lesquels des sédiments alluviaux plus jeunes associés à des réseaux hydrographiques recouvrent fréquemment une surface d’érosion.

Resumen

Los desarrollos de gas de veta de carbón (CSG) o gas metano de carbón en cuencas sedimentarias, como la Great Artesian Basin (GAB) en Australia, tienen el potencial de impactar en los acuíferos que cubren y subyacen a las formaciones de carbón objetivo. La medida en que esto puede ocurrir depende del grado de conectividad hidrogeológica entre las formaciones de carbón y los acuíferos o sistemas acuíferos circundantes, con implicancias generales para la gestión de las aguas subterráneas. En el sudeste de Australia, uno de esos sistemas acuíferos, el aluvión de Condamine (CA), se superpone a Walloon Coal Measures (WCM), que es una formación del GAB y también un objetivo para la producción de CSG. Para investigar la conectividad entre los dos sistemas, se emplearon múltiples líneas de investigación que incluían investigaciones de campo, recopilación y análisis de datos (incluyendo reinterpretación de la geología, análisis hidroquímico multivariado, mapeo regional del nivel del agua, perforación y extracción de testigos a través de la zona de contacto, instalaciones de piezómetros múltiples, pruebas de bombeo a largo plazo, monitoreo del nivel del agua subterránea y modelación a escala local). El estudio encontró un bajo nivel de conectividad entre el GAB y el superpuesto CA. Una capa de arcilla indiferenciada del basamento (denominada “zona de transición”)—una mezcla de arcilla aluvial y basamento meteorizado—proporciona un impedimento efectivo para el flujo a través de la CA y las formaciones GAB subyacentes. Los resultados del estudio tienen potencialmente una aplicación más amplia a través del GAB y de las cuencas sedimentarias, donde los sedimentos aluviales más jóvenes asociados con los sistemas fluviales frecuentemente cubren la superficie de erosión.

摘要

在诸如澳大利亚大自流盆地(GAB)的沉积盆地中的煤层气(CSG)或煤层甲烷的开发可能会影响目标煤层上覆和下伏的含水层。其影响程度取决于煤层与周边含水层或含水系统之间的水力联系, 这在地下水管理方面具有普遍意义。澳大利亚东南部的含水系统, 也就是Condamine冲积层(CA), 上覆于Walloon煤系(WCM), 即GAB中煤层气开采的目标煤层。为研究这两个系统之间的连通性, 采用多种调查方法, 包括现场调查, 数据收集和分析(包括地质数据再分析, 多变量水化学分析, 区域水位绘制, 接触带钻孔和取芯, 多个测压计安装, 长期抽水试验, 地下水位监测和局部尺度的模拟)。研究发现GAB与上层CA之间的连通性较差。一层未分化的基底粘土(称为“过渡带”), 也就是冲积粘土和风化基底的混合物, 有效阻碍了流体在CA和其下的GAB地层之间流动。该研究结果有望在GAB和那些与河流系统相联的更年轻冲积沉积频繁覆盖侵蚀面的沉积盆地中得到更广泛应用。

Resumo

Os desenvolvimentos de gás de veio de carvão (GVC) ou metano de leito de carvão em bacias sedimentares, como a Grande Bacia Artesiana (GBA) na Austrália, têm potencial para impactar os aquíferos sobrepostos e subjacentes às formações de carvão alvo. A extensão em que isso pode ocorrer depende do grau de conectividade hidrogeológica entre as formações de carvão e os aquíferos ou sistemas de aquíferos circundantes, com implicações gerais para o gerenciamento das águas subterrâneas. No sudeste da Austrália, um desses sistemas aquíferos, o Aluvião Condamine (AC), recobre as Medidas de Carvão da Valônia (MCV), que é uma formação da GBA e também um alvo para a produção de GVC. Para investigar a conectividade entre os dois sistemas, várias linhas de investigação foram empregadas, envolvendo investigações de campo, coleta e análise de dados (incluindo reinterpretação da geologia, análise multivariada de hidroquímica, mapeamento regional do nível da água, perfuração e extração testemunhos através da zona de contato, instalações piezométricas múltiplas, testes de bombeamento de longo prazo, monitoramento no nível das águas subterrâneas e modelagem em escala local). O estudo encontrou um baixo nível de conectividade entre o AC e as formações da GBA subjacentes. Uma camada de embasamento argiloso não diferenciada (referida como a ‘zona de transição’)—uma mistura de argila aluvial e embasamento intemperizado—fornece um impedimento eficaz ao fluxo através do AC e das formações GBA subjacentes. Os resultados do estudo potencialmente têm uma aplicação mais ampla em toda a GBA e bacias sedimentares, onde sedimentos aluviais mais jovens associados aos sistemas fluviais frequentemente sobrepõem a superfície erosiva.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Biggs AJW (2011) Groundwater salt accessions to land in the Queensland Murray-Darling basin, Australia. Hydrogeol J 19:719–726

    Article  Google Scholar 

  • Chae GT, Yun ST, Kwon MJ, Kim YS, Mayer B (2006) Batch dissolution of granite and biotic in water: implication for fluorine geochemistry in groundwater. Geochem J 40:95–102

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Am Geophys Union Trans 27:526–534

    Article  Google Scholar 

  • Dafny E, Silburn DM (2013) The hydrogeology of the Condamine River alluvial aquifer, Australia: a critical assessment. Hydrogeol J 22:705–727. https://doi.org/10.1007/s10040-013-1075-z

    Article  Google Scholar 

  • Department of Natural Resources Mines and Energy (2019) Groundwater database: Queensland. https://data.qld.gov.au/dataset/groundwater-database-queensland. Accessed 25 January 2019

  • Duffield M (2007) AQTESOLV Software. http://www.aqtesolv.com/. Accessed December 2019

  • GABCC (2018) Great Artesian Basin strategic management plan 2018. http://gabcc.org.au/. Accessed December 2019

  • Güler C, Thyne G, McCray J, Turner K (2002) Evaluation of graphical and multivariate statistical methods for classification of water chemistry data. Hydrogeol J10 4:455–474

    Article  Google Scholar 

  • Grigorescu M (2011) Mineralogy of the south-eastern Bowen Basin and north-eastern Surat Basin, Queensland. Record, Queensland Government, Brisbane, Australia

  • Habermehl MA (1986) Regional groundwater movement, hydrochemistry and hydrocarbon migration in the Eromanga Basin. In: Gravestock D, Moore P, Pitt G (eds) Contributions to the geology and hydrocarbon potential of the Eromanga Basin. Geological Society of Australia, Hornsby, Australia, pp 353–376

  • Habermehl MA (2002) Hydrogeology, hydrochemistry and isotope hydrology of the Great Artesian Basin. Bureau of Rural Sciences, Water Science Program, Canberra

  • Habermehl MA, Lau JE, Mackenzie DE, Wellman P (1996) Sources of fluoride in groundwater in North Queensland, Australia. 13th Australian Geological Convention, Canberra, 19–23 February 1996. GSA abstracts no. 41, Geological Society of Australia, Hornsby, Australia, 176 pp

  • Hantush MS (1962) Flow of ground water in sands of nonuniform thickness. J Geophys Res 67:1527–1534

    Article  Google Scholar 

  • Hem JD (1985) Study and interpretation of the chemical characteristics of natural water, 3rd edn. US Geol Surv Water Suppl Pap 2254

  • Hemker K, Post V (2014) MLU for Windows: well flow modelling in multilayer aquifer system—a software. http://www.microfem.com/download/mlu-user.pdf. Accessed December 2019

  • Herczeg AL, Dogramaci SS, Leaney FWJ (2001) Origin of dissolved salts in a large, semi-arid groundwater system: Murray Basin, Australia. Mar Freshw Res 52:41–52

    Article  Google Scholar 

  • Hillier JR (2010) Groundwater connections between the Walloon Coal Measures and the Alluvium of the Condamine River. A report for the Central Downs Irrigators Limited. https://www.aph.gov.au/DocumentStore.ashx?id=c8589d7a-a9da-480f-b5a7-bfd31f102795. Accessed December 2019

  • Huxley WJ (1982) Condamine River Valley groundwater investigation: the hydrogeology, hydrology and hydrochemistry of the Condamine River Valley Alluvium. MSc Thesis, Queensland University of Technology, Brisbane, Australia

  • Iverach CP, Cendón DI, Hankin SI et al (2015) Assessing connectivity between an overlying aquifer and a coal seam gas resource using methane isotopes, dissolved organic carbon and tritium. Sci Rep. https://doi.org/10.1038/srep15996

  • KCB (2010) Central Condamine Alluvium, stage II: conceptual hydrogeological summary, final report. Department of Environment and Resource Management, Brisbane, Australia

    Google Scholar 

  • KCB (2011) Conceptualisation of the Walloon Coal Measures beneath the Condamine Alluvium (final report). Report prepared by Klohn Crippen Berger for the Department of Environment and Resource Management. Department of Environment and Resource Management, Brisbane, Australia

    Google Scholar 

  • Lane WB (1979) Progress report on Condamine underground investigation to December 1978, vols I (text) and II (plans). Queensland Water Resources Commission, Brisbane, Australia

    Google Scholar 

  • Locsey KL, Cox M E (2000) Chemical character of groundwater in a basalt aquifer, north Queensland, Australia. Paper presented at the Proceedings of the XXXth International Congress of the International Association of Hydrogeologists, Cape Town, South Africa, 26 November–1 December, Balkema, Dordrecht, Netherlands

  • Locsey KL, Grigorescu M, Cox M (2012) Water–rock interactions: an investigation of the relationships between mineralogy and groundwater composition and flow in a subtropical basalt aquifer. Aquatic Geochem 18(1):45–75. https://doi.org/10.1007/s10498-011-9148-x

    Article  Google Scholar 

  • Myers T (2009) Groundwater management and coal bed methane development in the Powder River Basin of Montana. J Hydrol 368:178–193. https://doi.org/10.1016/j.jhydrol.2009.02.001

    Article  Google Scholar 

  • Nordstrom DK, Ball JW, Donahoe RJ, Whitemore D (1989) Groundwater chemistry and water–rock interactions at Stripa. Geochim Cosmochim Acta 53:1727–1740

    Article  Google Scholar 

  • OGIA (2016a) Surat Cumulative Management Area groundwater modelling report. https://www.dnrme.qld.gov.au/__data/assets/pdf_file/0008/1460627/groundwater-modelling-report-surat-cma.pdf. Accessed December 2019

  • OGIA (2016b) Hydrogeological conceptualisation report for the Surat Cumulative Management Area. OGIA, Department of Natural Resources and Mines, Brisbane, Australia

  • OGIA (2019) Underground water impact report for the Surat Cumulative Management Area. OGIA, Brisbane, Australia

  • Owen DDR, Cox ME (2015) Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Sci Total Environ. https://doi.org/10.1016/j.scitotenv.2015.03.115

  • Owen DDR, Shouakar-Stash O, Morgenstern U, Aravena R (2016) Thermodynamic and hydrochemical controls on CH4 in a coal seam gas and overlying alluvial aquifer: new insights into CH4 origins. Sci Rep. https://doi.org/10.1038/srep32407

  • Poulsen DL, Simmons CT, La Salle CLG, Cox JW (2006) Assessing catchment-scale spatial and temporal patterns of groundwater and stream salinity. Hydrogeol J 14:1339–1359

    Article  Google Scholar 

  • Queensland Water Commission (2012) Underground water impact report for the Surat Cumulative Management Area. Queensland Water Commission, Brisbane, Australia

    Google Scholar 

  • Radke BM, Ferguson J, Creswell RG et al (2000) Hydrochemistry and implied hydrodynamics of the Cadna-owie Hooray aquifer of Great Artesian Basin. Bureau of Rural Science, Canberra

    Google Scholar 

  • Ransley TR, Radke BM, Feitz AJ et al (2015) Hydrogeological atlas of the Great Artesian Basin. Geoscience Australia, Canberra

    Book  Google Scholar 

  • Ryan DJ, Hall A, Erriah L, Wilson PB (2012) The Walloon coal seam gas play, Surat Basin, Queensland. APPEA J 52:273–290. https://doi.org/10.1071/AJ11020

  • Schlumberger (Schlumberger Water Services Australia) (2011) Groundwater modelling of Surat basin. Rep. 6–114/R4. Prepared for Arrow Energy, Brisbane, Australia, 52 pp

  • Simpson HJ, Herczeg AL (1994) Delivery of marine chloride in precipitation and removal by rivers in the Murray-Darling basin, Australia. J Hydrol 154:323–350

    Article  Google Scholar 

  • SKM (Sinclair Knight Merz) (2003) Effluent reuse study: Darling Downs—south east of Queensland effluent reuse-treated effluent irrigation on the Darling Downs. SKM, Brisbane, Australia

  • State of Queensland (2019) Office of Groundwater Impact Assessment. https://www.business.qld.gov.au/industries/mining-energy-water/resources/environment-water/ogia. Accessed December 2019

  • Tan PL, George D, Comino M (2015) Cumulative risk management, coal seam gas, sustainable water, and agriculture in Australia. Int J Water Resour Dev 31:682–700. https://doi.org/10.1080/07900627.2014.994593

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground water storage. US Geological Survey, Ground Water Branch, Washington, DC

  • White DE, Hem JD, Warming GA (1963) Chemical composition of subsurface water. US Geol Surv Prof Pap 440-F

  • XLSTAT (2012) XLSTAT. http://www.xlstat.com. Accessed 15 January 2014

Download references

Acknowledgements

The drilling and pumping-test program was conducted by Arrow Energy within an overall design of the study. KCB undertook geological modelling work supported by the technical team from the Office of Groundwater Impact Assessment. Authors acknowledge Moya Tomlinson for assistance with text editing and the reviewers for feedback, thus improving the manuscript.

Funding

The work presented in this report was funded, designed and led by the Office of Groundwater Impact Assessment, which is responsible for undertaking cumulative impact assessment, setting management arrangements and reporting within the Surat cumulative management area.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev Pandey.

Additional information

Published in the special issue “Advances in hydrogeologic understanding of Australia’s Great Artesian Basin”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandey, S., Singh, D., Denner, S. et al. Inter-aquifer connectivity between Australia’s Great Artesian Basin and the overlying Condamine Alluvium: an assessment and its implications for the basin’s groundwater management. Hydrogeol J 28, 125–146 (2020). https://doi.org/10.1007/s10040-019-02089-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-019-02089-7

Keywords

Navigation