Skip to main content
Log in

Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer

  • Original Paper
  • Published:
Aquatic Geochemistry Aims and scope Submit manuscript

Abstract

A holistic study of the composition of the basalt groundwaters of the Atherton Tablelands region in Queensland, Australia was undertaken to elucidate possible mechanisms for the evolution of these very low salinity, silica- and bicarbonate-rich groundwaters. It is proposed that aluminosilicate mineral weathering is the major contributing process to the overall composition of the basalt groundwaters. The groundwaters approach equilibrium with respect to the primary minerals with increasing pH and are mostly in equilibrium with the major secondary minerals (kaolinite and smectite), and other secondary phases such as goethite, hematite, and gibbsite, which are common accessory minerals in the Atherton basalts. The mineralogy of the basalt rocks, which has been examined using X-ray diffraction and whole rock geochemistry methods, supports the proposed model for the hydrogeochemical evolution of these groundwaters: precipitation + CO2 (atmospheric + soil) + pyroxene + feldspars + olivine yields H4SiO4, HCO3 , Mg2+, Na+, Ca2+ + kaolinite and smectite clays + amorphous or crystalline silica + accessory minerals (hematite, goethite, gibbsite, carbonates, zeolites, and pyrite). The variations in the mineralogical content of these basalts also provide insights into the controls on groundwater storage and movement in this aquifer system. The fresh and weathered vesicular basalts are considered to be important in terms of zones of groundwater occurrence, while the fractures in the massive basalt are important pathways for groundwater movement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alberti A, Vezzalini G, Galli E, Quartieri S (1996) The crystal structure of gottardiite, a new zeolite. Eur J Mineral 8:69–75

    Google Scholar 

  • Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. Balkema, Rotterdam, p 536

    Google Scholar 

  • Arnórsson S (1999) Invited lecture: progressive water–rock interaction and mineral-solution equilibria in groundwater systems. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 471–474

    Google Scholar 

  • Arnórsson S, Gunnlaugsson E, Svavarsson H (1983) The chemistry of geothermal waters in Iceland: II. Mineral equilibria and independent variables controlling water compositions. Geochim Cosmochim Acta 47:547–566

    Article  Google Scholar 

  • Barshad I (1966) The effect of a variation in precipitation on the nature of clay mineral formation in soils from acid and basic igneous rocks. In: Heller L, Weiss A (eds) Proceedings of the international clay conference, vol 1. Israel Program for Scientific Translations, Jerusalem, pp 167–173

    Google Scholar 

  • Bean JA (1999) A conceptual model of groundwater behaviour in the Atherton Basalt Province, Atherton Tablelands, Far North Queensland. Unpublished MAppSc thesis, Queensland University of Technology, Brisbane, p 159

  • Benedetti MF, Menard O, Noack Y, Carvalho A, Nahon D (1994) Water–rock interactions in tropical catchments: field rates of weathering and biomass impact. Chem Geol 118:203–220

    Article  Google Scholar 

  • Benedetti MF, Boulegue J, Dia A, Bulourde M, Chauvel C, Chabaux F, Riotte J, Fritz B, Gérard M, Bertaux J, Etame J, Deruelle B, Ildefonse PH (1999) The weathering of mount cameroon: 2. Water geochemistry. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 365–367

    Google Scholar 

  • Berner RA (1971) Principles of chemical sedimentology. McGraw-Hill, New York, p 240

    Google Scholar 

  • Bish DL, Post JE (1989) Sample preparation for x-ray diffraction. Rev Mineral 20:72–99. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Bluth GJS, Kump LR (1994) Lithologic and climatologic controls of river chemistry. Geochim Cosmochim Acta 58:2341–2359

    Article  Google Scholar 

  • Buck LJ (1999) Physical features of volcanism and their relationship to groundwater, Atherton Basalt Province, North Queensland. Unpublished BAppSc(Hons) thesis, Queensland University of Technology, Brisbane p 178

  • Carr RG, Rodgers KA, Black PM (1980) The chemical and mineralogical changes accompanying the laterization of basalt at Kerikeri, North Auckland. J R Soc N Z 10(3):247–258

    Google Scholar 

  • Chalmers RO (1967) Australian rocks, minerals and gemstones. Angus and Robertson, Sydney, p 398

    Google Scholar 

  • Cleaves ET, Fisher DW, Bricker OP (1974) Chemical weathering of serpentinite in the Eastern Piedmont of Maryland. Geol Soc Am Bull 85:437–444

    Article  Google Scholar 

  • Cook PG, Herczeg AL, Mcewan KL (2001) Groundwater recharge and stream baseflow, Atherton Tablelands, Queensland. CSIRO Land and Water Technical Report 08/01, p 84

  • Craig DC, Loughnan FC (1964) Chemical and mineralogical transformation accompanying the weathering of basic volcanic rocks from New South Wales: Australia. Aust J Soil Res 2:218–234

    Article  Google Scholar 

  • Crovisier JL, Honnorez J, Fritz B, Petit JC (1992) Dissolution of subglacial volcanic glasses from Iceland: laboratory study and modelling. Appl Geochem Suppl Issue 1:55–81

    Article  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1966) An introduction to the rock forming minerals. Longman Group, London, p 528

    Google Scholar 

  • Deutsch WJ (1997) Groundwater geochemistry–fundamentals and applications to contamination. Lewis Publishers, Boca Raton, p 221

    Google Scholar 

  • Deutsch WA, Jenne EA, Krupka KM (1982) Solubility equilibria in basalt aquifers: the Columbia Plateau, eastern Washington, USA. Chem Geol 36:15–34

    Article  Google Scholar 

  • Drever JI (1997) The geochemistry of natural waters, surface and groundwater environments. Prentice Hall, Upper Saddle River, p 436

    Google Scholar 

  • Ecker A (1976) Groundwater behaviour in Tenerife, volcanic island (Canary Islands, Spain). J Hydrol 28:73–86

    Article  Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardona A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24

    Article  Google Scholar 

  • Eggleton RA, Foudoulis C, Varkevisser D (1987) Weathering of basalt: changes in rock chemistry and mineralogy. Clays Clay Min 35(3):161–169

    Article  Google Scholar 

  • Faure G (1998) Principles and applications of geochemistry. Prentice Hall, Upper Saddle River, p 600

    Google Scholar 

  • Folk RL, Land LS (1975) Mg/Ca ratio and salinity: two controls over crystallization of dolomite. Am Assoc Petrol Geol Bull 59(1):60–68

    Google Scholar 

  • Fridriksson TH, Neuhoff PS, Bird DK, Arnórsson S (1999) Clays and zeolites record alteration history at Teigarhorn, eastern Iceland. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 377–380

    Google Scholar 

  • Fryar AE, Mullican WF III, Macko SA (2001) Groundwater recharge and chemical evolution in the southern High Plains of Texas, USA. Hydrogeol J 9(6):522–542

    Article  Google Scholar 

  • Gaillardet J, Allègre CJ, Dupré B (1999) Invited lecture: Intensities and fluxes of global silicate weathering deduced from large river study. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 75–77

    Google Scholar 

  • Galli E, Quartieri S, Vezzalini G, Alberti A (1995) Boggsite and tschernichite-type zeolites from Mt. Adamson, Northern Victoria Land (Antarctica). Eur J Mineral 7:1029–1032

    Google Scholar 

  • Galli E, Quartieri S, Vezzalini G, Alberti A (1996) Gottardiite, a new high-silica zeolite from Antarctica: the natural counterpart of synthetic NU-87. Eur J Mineral 8:687–693

    Google Scholar 

  • García MG, Hidalgo M del V, Blesa MA (2001) Geochemistry of groundwater in the alluvial plain of Tucumán province, Argentina. Hydrogeol J 9(6):597–610

    Article  Google Scholar 

  • Garrels RM (1967) Genesis of some ground waters from igneous rocks. In: Abelson PH (ed) Researches in Geochemistry 2. Wiley, New York, pp 405–420

    Google Scholar 

  • Garrels RM, Mackenzie FT (1967) Origin of the chemical compositions of some springs and lakes. In: Stumm W (ed) Equilibrium concepts in natural water systems: a symposium, advances in Chemistry series 67. American Chemical Society, Washington, pp 222–242

    Chapter  Google Scholar 

  • Gérard M, Bertaux J, Ildefonse PH, Bulourde M, Chauvel C, Dia A, Benedetti M, Boulègue J, Chabaux F, Fritz B, Etame J, Ngounouno I, Deruelle B (1999) Weathering of mount Cameroon: 1. Mineralogy and geochemistry. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 381–384

    Google Scholar 

  • Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090

    Article  Google Scholar 

  • Gíslason SR, Arnórsson S (1993) Dissolution of primary basaltic minerals in natural waters: saturation state and kinetics. Chem Geol 105:117–135

    Article  Google Scholar 

  • Gíslason SR, Veblen DR, Livi KJT (1993) Experimental meteoric water–basalt interactions: characterization and interpretation of alteration products. Geochim Cosmochim Acta 57:1459–1471

    Article  Google Scholar 

  • Gíslason SR, Arnórsson S, Ármannsson H (1996) Chemical weathering of basalt in southwest Iceland: effects of runoff, age of rocks and vegetative/glacial cover. Am J Sci 296:837–907

    Article  Google Scholar 

  • Gunnarsson I, Arnórsson S (1999) New data on the standard Gibbs energy of H4SiO4 and its effect on silicate solubility. In: Ármannsson H (ed) Geochemistry of the earth’s surface. A. A. Balkema, Rotterdam, pp 449–452

    Google Scholar 

  • Hamilton WR, Woolley AR, Bishop AC (1989) Minerals, rocks and fossils. Hamlyn, London, p 320

    Google Scholar 

  • Head B (1979) Zeolites of the Garrawilla volcanics, New South Wales. Aust Mineral 23:109–111

    Google Scholar 

  • Helgeson HC, Garrels RM, Mackenzie FT (1969) Evaluation of irreversible reactions in geochemical processes involving minerals and aqueous solutions II. Applications. Geochim Cosmochim Acta 33:455–481

    Article  Google Scholar 

  • Herczeg AL (2001) Can major ion chemistry be used to estimate groundwater residence time in basaltic aquifers? In: Cidu R (ed) Water–rock interaction WRI-10. A. A. Balkema, Lisse, pp 529–532

    Google Scholar 

  • Herczeg AL, Payne TE (1992) Recharge and weathering processes in fractured rock aquifers in Northern Australia. In: Kharaka YK, Maest AS (eds) Water–rock interaction WRI-7. Balkema, Rotterdam, pp 561–564

    Google Scholar 

  • Hill IG, Worden RH, Meighan IG (2000) Geochemical evolution of a palaeolaterite: the Interbasaltic formation, Northern Ireland. Chem Geol 166:65–84

    Article  Google Scholar 

  • Hounslow AW (1995) Water quality data–analysis and interpretation. Lewis Publishers, Boca Raton, p 397

    Google Scholar 

  • Howard DG, Tschernich RW, Smith JV, Klein GL (1990) Boggsite, a new high silica zeolite from Goble, Columbia County, Oregon. Am Mineral 75:1200–1204

    Google Scholar 

  • Keller CK, van der Kamp G, Cherry JA (1991) Hydrogeochemistry of a clayey till 1. Spatial variability. Water Resour Res 27(10):2543–2554

    Google Scholar 

  • Leach LM (1986) Groundwater resources of the Atherton basalt, Atherton Shire. Queensland Water Resources Commission, Mareeba

    Google Scholar 

  • Liou JG (1971) Analcime equilibria. Lithos 4:389–402

    Article  Google Scholar 

  • Locsey KL, Cox ME (2000) Chemical character of groundwater in a basalt aquifer, North Queensland, Australia. In: Sililo O et al. (eds) Groundwater: past achievements and future challenges. Proceedings of the XXXth international congress of the international association of hydrogeologists, Cape Town, Balkema, Rotterdam, pp 555–560

  • Locsey KL, Cox ME (2002a) Statistical and hydrochemical methods to compare basalt- and basement rock-hosted groundwaters: Atherton Tablelands, north-eastern Australia. Environ Geol. doi:10.1007/s00254-002-0667-z

  • Locsey KL, Cox ME (2002b) Hydrochemical variability as a tool for defining groundwater movement in a basalt aquifer: the Atherton Tablelands, North Queensland. In: Proceedings of the international association of hydrogeologists international groundwater conference: balancing the groundwater budget, Darwin, 12–17 May 2002

  • Lyle P (1974) A petrological and petrochemical study of Tertiary basaltic rocks in north-east Ireland and north-west Ireland. Unpublished PhD thesis, Queen’s University, Belfast

  • Middelburg JJ, van der Weijden CH, Woittiez JRW (1988) Chemical processes affecting the mobility of major, minor and trace elements during the weathering of granitic rocks. Chem Geol 68:253–273

    Article  Google Scholar 

  • Millot R, Gaillardet J, Allègre CJ, Dupré B (1999) Silicate weathering rates in the Mackenzie river basin, North-West Territories, Canada. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 115–118

    Google Scholar 

  • Nesbitt HW, Wilson RE (1992) Recent chemical weathering of basalts. Am J Sci 292:740–777

    Article  Google Scholar 

  • Nordstrom DK, Munoz JL (1994) Geochemical thermodynamics. Blackwell Scientific Publications, Boston, p 493

    Google Scholar 

  • Oelkers EH, Schott J, Gíslason SR (1999) Invited lecture: A general mechanism for multi-oxide solid dissolution and its application to basaltic glass. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 413–416

    Google Scholar 

  • Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. United States Geological Survey Water-Resources Investigations Report 99–4259, p 312

  • Pawar NJ (1993) Geochemistry of carbonate precipitation from the ground waters in basaltic aquifers: an equilibrium thermodynamic approach. J Geol Soc India 41:119–131

    Google Scholar 

  • Pawar NJ, Pawar JB, Kumar S, Supekar A (2008) Geochemical eccentricity of ground water allied to weathering of basalts from the Deccan Volcanic Province, India: Insinuation on CO2 consumption. Aquat Geochem 14:41–71

    Article  Google Scholar 

  • Pearce BR (2002) Report on compilation of a geological conceptual model for the Atherton Tableland Basalts. Queensland Department of Natural Resources and Mines, Brisbane

    Google Scholar 

  • Pearce BR, Durick AM (2002) Assessment and management of basalt aquifers on the Atherton Tablelands, North Queensland, Australia. In: Proceedings of the international association of hydrogeologists international groundwater conference: balancing the groundwater budget, Darwin, 12–17 May 2002

  • Phillipo S, Naud J, Verkaeren J (1997) Geochemical evaluation of the Lueshe niobium deposit by Reitveld quantitative X-ray diffraction. Appl Geochem 12:175–180

    Article  Google Scholar 

  • Plummer LN (1992) Geochemical modeling of water–rock interaction: past, present, future. In: Kharaka YK, Maest AS (eds) Water–rock interaction WRI-7. Balkema, Rotterdam, pp 23–33

    Google Scholar 

  • Plummer LN, Back W (1980) The mass balance approach: application to interpreting the chemical evolution of hydrologic systems. Am J Sci 280:130–142

    Article  Google Scholar 

  • Price RC, Gray CM, Frey FA (1997) Strontium isotopic and trace element heterogeneity in the plains basalts of the Newer Volcanic Province, Victoria, Australia. Geochim Cosmochim Acta 61:171–192

    Article  Google Scholar 

  • Prudêncio MI, Sequeira Braga MA, Paquet H, Waerenborgh JC, Pereira LCJ, Gouveia MA (2002) Clay mineral assemblages in weathered basalt profiles from central and southern Portugal: climatic significance. Catena 49:77–89

    Article  Google Scholar 

  • Reitveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  Google Scholar 

  • Rimstidt JD (1997) Quartz solubility at low temperatures. Geochim Cosmochim Acta 44:1683–1699

    Article  Google Scholar 

  • Sheldrick MKM (1999) Stratigraphic interpretation of a lava field using petrogenetic modelling. Unpublished BAppSc(Hons) thesis, Queensland University of Technology, Brisbane, p 57

  • Stallard RF, Edmond JM (1987) Geochemistry of the Amazon 3. Weathering chemistry and limits to dissolved inputs. J Geophys Res 92(C8):8293–8302

    Google Scholar 

  • Stephenson PJ (1989) Northern Queensland. In: Johnson RW (ed) Intraplate volcanism in Eastern Australia and New Zealand. Cambridge University Press, Cambridge, pp 89–97

    Google Scholar 

  • Stephenson PJ, Griffin TJ, Sutherland FL (1980) Cainozoic volcanism in northeastern Australia. In: Henderson RA, Stephenson PJ (eds) The Geology and Geophysics of Northeastern Australia. Geological Society of Australia, Queensland Division, Brisbane, pp 349–374

    Google Scholar 

  • Sutherland FL (1983) Timing, trace and origin of basaltic migration in eastern Australia. Nature 305(8):123–126

    Article  Google Scholar 

  • Tschernich RW (1992) Zeolites of the world. Geoscience Pres Inc, Phoenix, p 563

    Google Scholar 

  • Walker GPL (1960) The amygdale minerals in the Tertiary lavas of Ireland: III. regional distribution. Mineral Mag 32:503–527

    Article  Google Scholar 

  • Wellman P, McDougall I (1974) Cainozoic igneous activity in eastern Australia. Tectonophysics 23:49–65

    Article  Google Scholar 

  • White AF, Claassen HC, Benson LV (1980) The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada. United States Geological Survey Water-Supply Paper 1535-Q. United States Government Printing Office, Washington, DC, p 34

  • White AF, Bullen TD, Vivit DV, Schulz MS, Blum AE (1999) Invited lecture: the effect of climate on chemical weathering of silicate rocks. In: Ármannsson H (ed) Geochemistry of the earth’s surface. Balkema, Rotterdam, pp 79–82

    Google Scholar 

  • Wood WW, Low WH (1986) Aqueous geochemistry and diagenesis in the eastern Snake River plain aquifer system, Idaho. Geol Soc Am Bull 97:1456–1466

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Micaela Grigorescu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Locsey, K.L., Grigorescu, M. & Cox, M.E. Water–Rock Interactions: An Investigation of the Relationships Between Mineralogy and Groundwater Composition and Flow in a Subtropical Basalt Aquifer. Aquat Geochem 18, 45–75 (2012). https://doi.org/10.1007/s10498-011-9148-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10498-011-9148-x

Keywords

Navigation