Skip to main content
Log in

Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources

Modélisation des interactions eaux souterraines/eaux de surface dans une vallée Alpine (Plaine d’Aoste, NW de l’Italie): effet de l’exploitation des eaux souterraines sur les ressources en eaux de surface

Modelado de las interacciones agua subterránea/agua superficial en un valle Alpino (la llanura de Aosta, noroeste de Italia): el efecto de la captación de agua subterránea en los recursos de agua de superficie

模拟阿尔卑斯山山谷(意大利西北Aosta平原)地下水/地表水相互作用

Modellazione dell’interazione tra acque sotterranee e superficiali in una valle Alpina (la Piana di Aosta): l’effetto del pompaggio sulle risorse idriche superficiali

Modelagem de interações entre águas subterrâneas/superficiais em um vale Alpino (planície de Aosta, NO da Itália): o efeito da captação de águas subterrâneas em recursos hídricos superficiais

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

A groundwater flow model of the Alpine valley aquifer in the Aosta Plain (NW Italy) showed that well pumping can induce river streamflow depletions as a function of well location. Analysis of the water budget showed that ∼80% of the water pumped during 2 years by a selected well in the downstream area comes from the baseflow of the main river discharge. Alluvial aquifers hosted in Alpine valleys fall within a particular hydrogeological context where groundwater/surface-water relationships change from upstream to downstream as well as seasonally. A transient groundwater model using MODFLOW2005 and the Streamflow-Routing (SFR2) Package is here presented, aimed at investigating water exchanges between the main regional river (Dora Baltea River, a left-hand tributary of the Po River), its tributaries and the underlying shallow aquifer, which is affected by seasonal oscillations. The three-dimensional distribution of the hydraulic conductivity of the aquifer was obtained by means of a specific coding system within the database TANGRAM. Both head and flux targets were used to perform the model calibration using PEST. Results showed that the fluctuations of the water table play an important role in groundwater/surface-water interconnections. In upstream areas, groundwater is recharged by water leaking through the riverbed and the well abstraction component of the water budget changes as a function of the hydraulic conditions of the aquifer. In downstream areas, groundwater is drained by the river and most of the water pumped by wells comes from the base flow component of the river discharge.

Résumé

Un modèle d’écoulement de l’eau souterraine de l’aquifère de la vallée Alpine de la Plaine d’Aoste (NW de l’Italie) a montré que les pompages dans des puits peuvent provoquer des réductions du débit de la rivière en fonction de l’emplacement des puits. L’analyze du bilan hydrologique a mis en évidence le fait que ∼80% de l’eau pompée pendant deux ans par un puits sélectionné dans la zone avale, provient de l’écoulement de base de la rivière. Les aquifères alluviaux localisés dans des vallées alpines sont caractérisés par un contexte hydrogéologique particulier, où les relations eaux souterraines/eaux de surface changent d’amont en aval ainsi que de manière saisonnière. Un modèle hydrogéologique en régime transitoire, utilisant MODFLOW2005 et le module d’écoulement de surface (SFR2) est. ici présenté, et vise à examiner les échanges entre la principale rivière régionale (La rivière Dora Baltea, un affluent du Po), ses affluents et l’aquifère superficiel sous-jacent, qui est. affecté par des oscillations saisonnières. La distribution tridimensionnelle de la conductivité hydraulique de l’aquifère a été obtenue à partir d’un système de codage spécifique dans la base de données TANGRAM. Les charges hydrauliques et les écoulements ont été utilisés pour calibrer le modèle en utilisant PEST. Les résultats ont montré que les fluctuations de la nappe jouent un rôle important dans des interconnexions eaux souterraines/eaux de surface. Dans les zones amont, l’aquifère est. rechargé par l’infiltration d’eau à travers le lit de la rivière et la composante d’exploitation au puits du bilan hydrologique évolue en fonction des conditions hydrauliques de l’aquifère. Dans des zones aval, l’eau souterraine est. drainée par la rivière et la majeure partie de l’eau pompée par les puits provient de la composante de l’écoulement de base de la rivière.

Resumen

Un modelo de flujo de agua subterránea del acuífero del valle alpino en la llanura de Aosta (NW de Italia) mostró que el bombeo de pozos puede inducir la disminución del flujo de los ríos en función de la ubicación de los pozos. El análisis del balance de agua mostró que el 80% del agua bombeada durante dos años por un pozo seleccionado en el área aguas abajo proviene del flujo base de la descarga principal del río. Los acuíferos aluviales alojados en los valles alpinos se encuentran dentro de un contexto hidrogeológico particular en el que las relaciones agua subterránea / agua superficial cambian de aguas arriba a aguas abajo, así como estacionalmente. Aquí se presenta un modelo de agua subterránea transitorio con MODFLOW2005 y el paquete Streamflow-Routing (SFR2), destinado a investigar los intercambios regionales de agua entre el río principal (Dora Baltea, afluente de margen izquierda del río Po), sus afluentes y el acuífero somero subyacente, afectado por oscilaciones estacionales. La distribución tridimensional de la conductividad hidráulica del acuífero se obtuvo por medio de un sistema de codificación específico dentro de la base de datos TANGRAM. Tanto la carga hidráulica y los orígenes del flujo se utilizaron para realizar la calibración del modelo utilizando PEST. Los resultados mostraron que las fluctuaciones de la capa freática desempeñan un papel importante en las interconexiones entre aguas subterráneas y aguas superficiales. En las zonas aguas arriba, el agua subterránea es recargada por la filtración de agua a través del lecho del río y el componente de captación del pozo del balance del agua cambia en función de las condiciones hidráulicas del acuífero. En las áreas aguas abajo, el agua subterránea es drenada por el río y la mayor parte del agua bombeada por los pozos proviene del componente de flujo básico de la descarga del río.

摘要

(意大利西北)Aosta平原阿尔卑斯山山谷含水层地下水流模型显示,根据水井位置不同,水井抽水能够引起河流径流枯竭。水平衡分析显示,两年间从下游选定的一口井抽取的水大约80%来自主要河流排泄的基流。位于阿尔卑斯山山谷的冲积含水层处于特殊的水文地质环境下,在这里地下水/地表水相互关系从上游到下游发生变化,并且也有季节性变化。这里展示了采用MODFLOW2005和Streamflow-Routing (SFR2) Package的瞬时地下水模型,目的就是调查主要主要区域河流(Dora Baltea河,Po河左手边的支流)、及其支流以及下伏的浅层含水层,下伏浅层含水层受季节性振幅的影响。通过TANGRAM数据库内特殊的编码系统获取了含水层水力传导率的三维分布情况。利用水头和通量指标采用PEST进行了模型校正。结果显示,水位的波动在地下水/地表水相互作用中发挥了重要的作用。在上游区,水通过河床渗漏补给地下水,水平衡中水井抽水成分随着含水层水力条件的不同而变化。在下游区,地下水通过河流排泄,水井抽取的大部分水来自河流排泄的基流成分。

Riassunto

Il modello di flusso delle acque sotterranee riferito all’acquifero Alpino della Piana d’Aosta (Italia NO) ha mostrato che il pompaggio può indurre riduzioni della portata del fiume in funzione della posizione del pozzo. L’analisi del bilancio idrico ha mostrato che circa l’80% dell’acqua pompata da un pozzo nella zona a valle viene dal deflusso di base del fiume principale. Gli acquiferi alluvionali ospitati in valli Alpine si trovano all’interno di particolari contesti idrogeologici dove le relazioni tra acque sotterranee e superficiali cambiano da monte a valle idrogeologico, ma anche stagionalmente. Viene presentato un modello di flusso transitorio che usa MODFLOW2005 e il pacchetto Stream-Flow (SFR2) con l’obiettivo di investigare gli scambi d’acqua tra il principale fiume della regione (Dora Baltea, affluente sinistro del fiume Po), i suoi affluenti e la sottostante falda acquifera la quale è caratterizzata da ampie oscillazioni stagionali. Attraverso l’uso di uno specifico database chiamato TANGRAM è stata ottenuta la distribuzione tridimensionale della conducibilità idraulica dell’acquifero. Il modello è stato calibrato utilizzando sia target di carico idraulico sia di flusso impiegando il codice PEST. I risultati mostrano che le fluttuazioni della tavola d’acqua hanno un ruolo importante nelle interazioni tra acque sotterranee e superficiali. Nell’area a monte, la falda è ricaricata mediante percolazione da subalveo e l’analisi del bilancio idrico ha evidenziato che l’acqua estratta da un pozzo presente in quest’area proviene da elementi diversi del bilancio idrogeologico in funzione delle condizioni idrauliche in cui si trova l’acquifero. Nella zona a valle, la falda è drenata dal fiume è la maggior parte dell’acqua emunta dai pozzi proviene dalla componente del deflusso di base della portata totale del fiume.

Resumo

Um modelo de fluxo de águas subterrâneas do aquífero no vale Alpino, planície de Aosta (NO da Itália), mostrou que o bombeamento pode induzir depleções do fluxo fluvial em função da localização do poço. Análises do balanço hídrico mostraram que cerca de 80% da água bombeada, durante dois anos, por um poço selecionado na área a jusante vem do fluxo de base da descarga do rio principal. Aquíferos aluviais hospedados em vales Alpinos se enquadram em um contexto hidrogeológico particular, onde as relações águas subterrâneas/superficiais mudam de montante para jusante, assim como mudam sazonalmente. Um modelo transiente de águas subterrâneas que utiliza MODFLOW2005 e o pacote Streamflow-Routing (SFR2) é aqui apresentado, com o objetivo de investigar trocas de água entre o rio regional principal (Rio Dora Baltea, um afluente a esquerda do Rio Po), seus afluentes e o subjacente aquífero raso, que é afetado por oscilações sazonais. A distribuição tridimensional da condutividade hidráulica do aquífero foi obtida por meio de um sistema de codificação específico dentro da base de dados TANGRAM. Ambos os valores de carga hidráulica e fluxo foram utilizados para executar a calibração do modelo usando PEST. Resultados mostraram que as flutuações do nível de água desempenham um papel importante nas interconexões entre águas subterrâneas/superficiais. Nas áreas à montante, as águas subterrâneas são recarregadas por escoamento de água através do leito do rio e a componente captação do poço do balanço hídrico muda em função das condições hidráulicas do aquífero. Nas áreas à jusante, as águas subterrâneas são drenadas pelo rio e a maior parte da água bombeada pelos poços vem do componente de fluxo de base da descarga do rio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alley WM (2007) Another water budget myth: the significance of recoverable ground water in storage. Ground Water 45:251. doi:10.1111/j.1745-6584.2006.00274.x

    Article  Google Scholar 

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186, 79 pp

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, 381 pp

  • Barlow PM, Leake SA (2012) Streamflow depletion by wells: understanding and managing the effects of groundwater pumping on streamflow. US Geol Surv Circ 1376, 84 pp

  • Barnes HH (1967) Roughness characteristics of natural channels. US Geol Surv Water Suppl Pap 1849

  • Bonomi T, Cavallin A, Stelluti G, Guerra G (2002) 3-D subsoil parameterisation in a plan region of north Italy. Mem Soc Geol Ital 57:543–550

    Google Scholar 

  • Bonomi T (2009) Database development and 3D modeling of textural variations in heterogeneous, unconsolidated aquifer media: application to the Milan plain. Comput Geosci 35:134–145. doi:10.1016/j.cageo.2007.09.006

    Article  Google Scholar 

  • Bonomi T, Fumagalli L, Benastini V, Rotiroti M, Capodaglio P, Simonetto F (2013) Modellazione preliminare del flusso idrico sotterraneo e delle interazioni con le acque superficiali: piana di Aosta [Preliminary groundwater modelling by considering the interaction with superficial water: Aosta plain case (northern Italy)]. Acq Sott. doi:10.7343/AS-017-13-0041

  • Bonomi T, Fumagalli L, Rotiroti M, Bellani A, Cavallin A (2014) Banca dati idrogeologica TANGRAM©: strumento per elaborazioni quantitative di dati per la valutazione delle acque sotterranee [The hydrogeological well database TANGRAM©: a tool for data processing to support groundwater assessment]. Acq Sott doi:10.7343/AS-072-14-0098

  • Bonomi T, Fumagalli M L, Rotiroti M, Perego R, Simonetto F, Capodaglio P (2015a) Groundwater flow modelling of the Aosta Plain in northern Italy. In: Engineering geology for society and territory, vol 3. Springer, Heidelberg, Germany, pp 227–230. doi:10.1007/978-3-319-09054-2_46

  • Bonomi T, Fumagalli L, Stefania GA, Rotiroti M, Pellicioli F, Simonetto F, Capodaglio P (2015b) Groundwater contamination by Cr(VI) in the Aosta plain (northern Italy): characterization and preliminary modeling. Rend Online Soc Geol Ital 35:21–24. doi:10.3301/ROL.2015.54

    Google Scholar 

  • Dagan G (2012) Flow and transport in porous formations. Springer, Heidelberg, Germany

  • Dagan G, Lessoff SC (2007) Transmissivity upscaling in numerical aquifer models of steady well flow: unconditional statistics. Water Resour Res 43:1–12. doi:10.1029/2006WR005235

    Google Scholar 

  • De Luca D, Masciocco L, Motta EV, Tonussi M (2004) Studio geologico finalizzato alla definizione delle aree di salvaguardia dei pozzi di acquedotto del comune di Aosta [A geological study aimed at defining the well protection areas of the wells in the town of Aosta]. Università degli Studi di Torino e Comune di Aosta, Italy

  • Doherty J (2008a) PEST, model independent parameter estimation: user manual, 5th edn. Watermark, Brisbane, Australia. http://www.pesthomepage.org/Downloads.php. Accessed October 1, 2009

  • Doherty J (2008b) PEST, model independent parameter estimation: addendum to user manual, 5th edn. Watermark, Brisbane, Australia. http://www.pesthomepage.org/Downloads.php. Accessed October 1, 2009

  • Doherty J, Hunt R (2010) Approaches to highly parameterized inversion: a guide to using PEST for groundwater-model calibration. US Geol Surv Sci Invest Rep 2010-5169, 70 pp

  • Domenico PA, Mifflin MD (1965) Water from low-permeability sediments and land subsidence. Water Resour Res 1(4):563–576

    Article  Google Scholar 

  • Feinstein D (2012) Since “Groundwater and surface water—a single resource”: some US geological survey advances in modeling groundwater/surface-water interactions. Ital J Groundw 1:9–24. doi:10.7343/AS-001-12-0001

  • Feinstein DT, Hunt RJ, Reeves HW (2010) Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies. US Geol Surv Sci Invest Rep 2010-5109, 379 pp

  • Harbaugh AW (2005) MODFLOW-2005, The U.S. Geological Survey modular ground-water model: the ground-water flow process. US Geol Surv Tech Methods 253

  • Hatch CE, Fisher AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389:276–288. doi:10.1016/j.jhydrol.2010.05.046

    Article  Google Scholar 

  • Hill M (1998) Methods and guidelines for effective model calibration US Geol Surv Resour Invest Rep 98-4005, 98 pp

  • Leaf AT, Fienen MN, Hunt RJ, Buchwald CA (2015) Groundwater/surface-water interactions in the Bad River Watershed, Wisconsin. US Geol Surv Invest Rep 2015–5162, 110 pp, doi:10.3133/sir20155162

  • Martin PJ, Frind EO (1998) Modeling a complex multi aquifer system: the Waterloo moraine. Ground Water 36(4):679–690

    Article  Google Scholar 

  • Masterson JP, Granato GE (2013) Numerical simulation of groundwater and surface-water interactions in the Big River Management Area, central Rhode Island. US Geol Surv Invest Rep 2012-5077, 53 pp. http://pubs.usgs/sir/2012/5077/. Accessed July 2017

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Techniques of Water-Resources Investigations, book 6, chapter A1, USGS, Reston, VA, 586 pp

  • Nicoud G, De Los Cobos G, Fudral S, Dray M, Pollicini F, Novel JP, Olive P (1999) Les étapes du comblement alluvial de la plaine d’Aoste (Italie): une dynamique lacustre complexe [The alluvial filling stages of the Aosta Plain (Italy): a complex lacustrine dynamic]. Eclogae Geol Helv 92:139–147

  • Niswonger RG, Prudic DE (2005) Documentation of the Streamflow-Routing (SFR2) Package to include unsaturated flow beneath streams: a modification to SFR1. US Geol Surv Techniques and Methods 6-A13, USGS, Reston, VA, 50 pp

  • PIAHVA - Programme International d’Action Hydrogeologique en Val d’Aoste (1992) La nappe alluviale de la Doire – Vallèe d’Aoste [The alluvial aquifer of the Doire – Aosta Valley]. Final report, Universités d’Avignon, Chambéry, Turin, Centre de Recherches Géodynamiques de Tholon – Univ. Paris 6 – Ecole Polytecnique de Lausanne (GEOLEP), France

  • PIAHVA - Programme International d’Action Hydrogeologique en Val d’Aoste (1996) Modelisation de l’ecoulement souterrain del l’aquifere alluvial de la Doire Baltée- Val d’Aoste, Italie [Groundwater flow modeling of the alluvial aquifer of the Dora Baltea - Aosta Valley, Italy]. Final report, Universités d’Avignon, Chambéry, Turin, Centre de Recherches Géodynamiques de Tholon – Univ. Paris 6 – Ecole Polytecnique de Lausanne (GEOLEP), France

  • Paradigm (2008) Paradigm GOCAD 2008: user’s guide. Paradigm, Houston, TX

  • Perego R, Bonomi T, Fumagalli L, Benastini V, Aghib F, Rotiroti M, Cavallin A (2014) 3D reconstruction of the multi-layer aquifer in a Po plain area. Rend Online Soc Geol Ital 30:41–44. doi:10.3301/ROL.2014.09

    Google Scholar 

  • Pollicini F (1994) Geologia ed idrogeologia della piana di Aosta [Geology and hydrogeology of the Aosta plain]. PhD Thesis, Università degli Studi di Torino, Torino, Italy

  • Prudic DE, Konikow LF, Banta ER (2004) A new streamflow-routing (SFR1) package to simulate stream–aquifer interaction with MODFLOW-2000. US Geol Surv Open-File Rep 2004-1042

  • Rotiroti M, Di Mauro B, Fumagalli L, Bonomi T (2015a) COMPSEC, a new tool to derive natural background levels by the component separation approach: application in two different hydrogeological contexts in northern Italy. J Geochem Explor 158:44–54. doi:10.1016/j.gexplo.2015.06.017

    Article  Google Scholar 

  • Rotiroti M, Fumagalli L, Frigerio MC, Stefania GA, Simonetto F, Capodaglio P, Bonomi T (2015b) Natural background levels and threshold values of selected species in the alluvial aquifers in the Aosta Valley region (N Italy). Rend Online Soc Geol Ital 35:256–259. doi:10.3301/ROL.2015.114

    Google Scholar 

  • Rotiroti M, Jakobsen R, Fumagalli L, Bonomi T (2015c) Arsenic release and attenuation in a multilayer aquifer in the Po plain (northern Italy): reactive transport modeling. Appl Geochem 63:599–609. doi:10.1016/j.apgeochem.2015.07.001

    Article  Google Scholar 

  • Rumbaugh JO, Rumbaugh DB (2004) Guide to using groundwater vistas. Reinhold, New York

    Google Scholar 

  • Sánchez-Vila X, Girardi JP, Carrera J (1995) A synthesis of approaches to upscaling of hydraulic conductivities. Water Resour Res 31(4):867–882

    Article  Google Scholar 

  • Sanz D, Castano S, Cassiraga E, Sahuquillo A, Gomez-Alday JJ, Pena S, Calera A (2011) Modeling aquifer–river interactions under the influence of groundwater abstraction in the Mancha oriental system (SE Spain). Hydrogeol J 19(2):475–487. doi:10.1007/s10040-010-0694-x

    Article  Google Scholar 

  • Sonnenborg TO, Christensen BSB, Nyegaard P, Henriksen HJ, Refsgaard JC (2003) Transient modeling of regional groundwater flow using parameter estimates from steady-state automatic calibration. J Hydrol 273(1):188–204

    Article  Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235:27–43. doi:10.1016/S0022-1694(00)00263-8

    Article  Google Scholar 

  • Stefania GA, Fumagalli L, Rotiroti M, Capodaglio P, Simonetto F, Bonomi T (2015) Three-dimensional reconstruction of aquifer heterogeneity for modeling the transport of Cr(VI) in an Alpine alluvial aquifer. Rend Online della Soc Geol Ital. 39(1):395. doi:10.3301/ROL.2016.63

  • Tangram (2016) Database per pozzi [Well Database]. Dept. of Earth and Environmental Sciences, University of Milan-Bicocca, Milan, Italy. http://www.tangram.samit.unimib.it/index.aspx. Accessed 26 September 2016

  • Taviani S, Henriksen HJ (2015) The application of a groundwater/surface-water model to test the vulnerability of Bracciano Lake (near Rome, Italy) to climatic and water-use stresses. Hydrogeol J 23:1481–1498. doi:10.1007/s10040-015-1271-0

    Article  Google Scholar 

  • Triganon A, Dzikowski M, Novel JP, Dray M, Zuppi GM, Parriaux A (2003) Échanges nappe-rivière en vallée alpine: quantification et modélisation (Vallée d’Aoste, Italie) [Groundwater–river exchanges in an alpine valley: quantification and modeling (Aosta Valley, Italy)]. Can J Earth Sci 40:775–786. doi:10.1139/e03-017

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Ground water and surface water: a single resource. US Geol Surv Circ 1139, 79 pp

  • Zhou Y (2009) A critical review of groundwater budget myth, safe yield and sustainability. J Hydrol 370:207–213. doi:10.1016/j.jhydrol.2009.03.009

    Article  Google Scholar 

Download references

Acknowledgements

Funding was provided through the scientific collaboration number 2-18-2009100-3 with the Regional Environmental Protection Agency - Aosta Valley Region. The authors are grateful to Sara Taviani, University of Milano-Bicocca, for the support received. The Gocad Research Group and Paradigm Geophysical are acknowledged for welcoming the University of Milano-Bicocca into the Gocad Consortium (http://www.ring-team.org/home).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gennaro A. Stefania.

Electronic supplementary material

ESM 1

(PDF 761 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefania, G.A., Rotiroti, M., Fumagalli, L. et al. Modeling groundwater/surface-water interactions in an Alpine valley (the Aosta Plain, NW Italy): the effect of groundwater abstraction on surface-water resources. Hydrogeol J 26, 147–162 (2018). https://doi.org/10.1007/s10040-017-1633-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1633-x

Keywords

Navigation