Skip to main content

Advertisement

Log in

Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data

Comprendre le passé pour interpréter le futur: comparaison de la recharge simulée des eaux souterraines dans le bassin supérieur de la rivière Colorado (Etats-Unis d’Amérique) en utilisant des données climatiques historiques observées et issues d’un modèle global de circulation

El conocimiento del pasado para interpretar el futuro: la comparación de la recarga simulada de agua subterránea en la cuenca superior del río Colorado (EE.UU.), utilizando datos climáticos históricos y modelos generales de circulación

了解过去,解译未来:利用观测资料和综合-循环-模型历史气候资料对(美国)上科罗拉多河流域模拟的地下水补给进行对比

Entendendo o passado para interpretar o futuro: comparação da recarga das águas subterrâneas simulada na bacia superior do Rio Colorado (EUA) usando dados climáticos históricos observados e de modelo de circulação geral

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In evaluating potential impacts of climate change on water resources, water managers seek to understand how future conditions may differ from the recent past. Studies of climate impacts on groundwater recharge often compare simulated recharge from future and historical time periods on an average monthly or overall average annual basis, or compare average recharge from future decades to that from a single recent decade. Baseline historical recharge estimates, which are compared with future conditions, are often from simulations using observed historical climate data. Comparison of average monthly results, average annual results, or even averaging over selected historical decades, may mask the true variability in historical results and lead to misinterpretation of future conditions. Comparison of future recharge results simulated using general circulation model (GCM) climate data to recharge results simulated using actual historical climate data may also result in an incomplete understanding of the likelihood of future changes. In this study, groundwater recharge is estimated in the upper Colorado River basin, USA, using a distributed-parameter soil-water balance groundwater recharge model for the period 1951–2010. Recharge simulations are performed using precipitation, maximum temperature, and minimum temperature data from observed climate data and from 97 CMIP5 (Coupled Model Intercomparison Project, phase 5) projections. Results indicate that average monthly and average annual simulated recharge are similar using observed and GCM climate data. However, 10-year moving-average recharge results show substantial differences between observed and simulated climate data, particularly during period 1970–2000, with much greater variability seen for results using observed climate data.

Résumé

En évaluant les impacts potentiels du changement climatique sur les ressources en eau, les gestionnaires de l’eau cherchent à comprendre comment les conditions futures peuvent être différentes de celles d’un passé récent. Les études des impacts du climat sur la recharge des eaux souterraines comparent souvent la recharge simulée de périodes futures et de temps historique sur une moyenne mensuelle ou sur une base moyenne annuelle, ou comparent la recharge moyenne pour des décennies à venir à celle d’une décennie récente. Les estimations de la recharge historique de référence, qui sont comparées avec les conditions futures, sont souvent de simulations utilisant des données climatiques historiques observées. La comparaison des résultats moyens mensuels, des résultats moyens annuels, ou également faisant la moyenne sur des décennies historiques sélectionnées, pourrait masquer la véritable variabilité des résultats historiques et conduire à une interprétation erronée des conditions futures. La comparaison des résultats simulés de la recharge future en utilisant les données climatiques d’un modèle de circulation globale (GCM) aux résultats simulés de la recharge en utilisant les données climatiques historiques actuelles pourraient également conduire à une compréhension incomplète de la probabilité des changements futurs. Dans cette étude, la recharge des eaux souterraines est estimée dans le bassin supérieur de la rivière Colorado, aux Etats-Unis d’Amérique, en utilisant un modèle distribué des paramètres du sol et du bilan hydrique pour calculer la recharge des eaux souterraines pour la période 1951–2010. Les simulations de recharge sont réalisées en utilisant les données de précipitation, de température maximum, et de température minimum, à partir des données climatiques observées et des projections climatiques 97 CMIP5 (Projet d’Intercomparaison de Modèle Couplé, phase 5). Les résultats montrent que les recharges moyennes mensuelles et annuelles simulées sont similaires en utilisant les données climatiques observées ou simulées GCM. Toutefois, les résultats de la recharge moyenne glissante sur 10 ans montrent des différences significatives entre les données climatiques observées et simulées, en particulier durant la période 1970–2000, avec une variabilité beaucoup plus importante constatée pour les résultats utilisant les données climatiques observées.

Resumen

En la evaluación de los posibles impactos del cambio climático sobre los recursos hídricos, los gestores del agua tratan de comprender cómo las futuras condiciones pueden diferir de las del pasado reciente. Los estudios de los impactos del clima sobre la recarga de agua subterránea a menudo comparan recargas simuladas a partir de períodos de tiempo futuros e históricos sobre una base promedios mensuales o anuales globales, o comparan la recarga media de las próximas décadas a que a partir de una sola década reciente. Las estimaciones de recarga histórica a partir de una línea de base, que se comparan con las condiciones futuras, son a menudo a partir de simulaciones utilizando datos climáticos históricos observados. La comparación de los resultados de promedio mensuales, los resultados de promedios anuales, o incluso un promedio histórico de más décadas seleccionadas, pueden enmascarar la verdadera variabilidad en los resultados históricos y dar lugar a una interpretación errónea de las condiciones futuras. La comparación de los futuros resultados de recarga simulados utilizando los datos climáticos del modelo de circulación general (GCM) con los resultados simulados utilizando datos climáticos históricos reales también puede dar lugar a una comprensión incompleta de la probabilidad de los cambios futuros. En este estudio se estima la recarga del agua subterránea en la cuenca alta del río Colorado, EEUU, utilizando un modelo de balance de agua del suelo de parámetro distribuido de recarga del agua subterránea para el período 1951–2010. Las simulaciones de la recarga se llevan a cabo utilizando los datos de precipitación, temperatura máxima y mínima a partir de datos climáticos observados y de proyecciones del 97 CMIP5 (Coupled Model Intercomparison Project, phase 5). Los resultados indican que la recarga promedio mensual y anual simulada son similares utilizando datos climáticos observados y el GCM. Sin embargo, utilizando los promedios móviles de 10 años los resultados de la recarga muestran diferencias sustanciales entre los datos climáticos observados y simulados, sobre todo durante período 1970–2000, apreciándose una mucho mayor variabilidad para los resultados a partir de los datos climáticos observados.

摘要

在评估气候变化对水资源的潜在影响中,水管理者寻求了解未来状况与近期有何不同。研究气候对地下水补给的影响常常在平均每月基础上或者每年基础上比较未来和历史时期的模拟补给量,或者比较未来几十年到最近10年的平均补给量。基线历史补给估算值与未来状况进行了比较,这个估算值常常通过采用观测的历史气候资料进行模拟而获取。平均月度结果、平均年度结果、或者甚至过去所选择的历史上数十年的平均数比较可能会掩盖历史结果的真实变化性,并且导致错误解译未来的状况。采用综合循环模型(GCM)气候资料模拟的未来补给结果与采用实际历史气候资料模拟的补给结果比较也可能会导致不能完全了解未来变化的可能性。在本项研究中,采用分布参数土壤-水平衡地下水补给模型对1951年到2010年间美国上科罗拉多河流域的地下水补给量进行了估算。利用观测的气候资料中以及97 CMIP5(耦合模型相互比较项目,第五阶段)预测结果中的降水、最高温度和最低温度资料进行了补给模拟实验。结果显示,采用观测的和综合循环模型气候资料所模拟的平均月度和平均年度补给量类似。然而,10年移动平均补给结果显示,观测的和气候资料模拟的气候资料有很大差别,特别是在1970–2000期间,采用观测的气候资料获取的结果有更大的变化性。

Resumo

Na avaliação de potenciais impactos da mudança climática nos recursos hídricos, a gestão de recursos hídricos busca entender como as condições futuras podem diferir do passado recente. Estudos sobre o impacto climático na recarga das águas subterrâneas geralmente comparam a recarga simulada de períodos futuros e históricos com base em uma média mensal ou média anual, ou camparam a recarga média de décadas futuras com aquela de uma única década recente. Estimativas da recarga histórica de referência, que são comparadas com condições futuras, são geralmente de simulação usando dados climáticos históricos observados. A comparação de resultados de médias mensais, resultados de médias anuais ou ainda calculando a média sobre décadas históricas selecionadas, podem mascarar a real variabilidade nos resultados históricos e levar a interpretação equivocada das condições futuras. A comparação resultados simulados da recarga futura usando dados climáticos de modelo de circulação geral (MCG) com resultados simulados da recarga usando dados climáticos históricos atuais também podem resultar em um entendimento incompleto das chances de futuras mudanças. Nesse estudo, a recarga das águas subterrâneas é estimada na bacia superior do Rio Colorado, EUA, usando o modelo de recarga das águas subterrâneas de balanço solo-água com parâmetros distribuídos para o período 1951–2000. Simulações da recarga foram feitas usando dados de precipitação, temperatura máxima e temperatura mínima a partir de dados climáticos observados e das projeções 97 CMIP5 (Coupled Model Intercomparison Project, phase 5). Os resultados indicam que a recarga média simulada mensalmente e anualmente são similares usando dados climáticos observados e do MCG. Entretanto, os resultados da recarga com uma média móvel de 10 anos mostraram diferenças substanciais entre os dados climáticos observados e simulados, particularmente durante o período 1970–2000, com variabilidade visível muito maior para os resultados usando dados climáticos observados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ali R, McFarlane D, Varma S, Dawes W, Emelyanova I, Hodgson G (2012) Potential climate change impacts on the water balance of regional unconfined aquifer systems in south-western Australia. Hydrol Earth Syst Sci 16:4581–4601. doi:10.5194/hess-16-4581-2012

    Article  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998 with errata 2006) Crop evapotranspiration—guidelines for computing crop water requirements: FAO Irrigation and Drainage paper no. 56. Food and Agricultural Organization of the United Nations, Rome, Italy, p 333. http://www.fao.org/docrep/x0490e/x0490e00.htm#Contents. Accessed August 2016

  • Allen DM, Cannon AJ, Toews MW, Scibek J (2010) Variability in simulated recharge using different GCMs. Water Resour Res 46:W00F03. doi:10.1029/2009WR008932

    Article  Google Scholar 

  • Anderson DL (2004) History of the development of the Colorado River and “The Law of the River”. In: Rogers JR, Brown GO, Garbrecht JD (eds) Water resources and environmental history, pp 75–81, doi:10.1061/40738(140)11

  • Apodaca LE, Bails JB (2000) Water quality in alluvial aquifers of the southern Rocky Mountains Physiographic Province, Upper Colorado River basin, Colorado, 1997. US Geol Surv Water Resour Invest Rep 99-4222, 68 pp. http://pubs.usgs.gov/wri/wri99-4222. Accessed August 2016

  • Barnett TP, Pierce DW, Hidalgo HG, Bonfils C, Santer BD, Das T, Bala G, Wood AW, Nozawa T, Mirin AA, Cayan DR, Dettinger MD (2007) Human-induced changes in the hydrology of the western United States. Science 319:1080–1083. doi:10.1126/science.1152538

    Article  Google Scholar 

  • Bureau of Reclamation (2011) Quality of water, Colorado River Basin. Progress report no. 23. USDI, Bureau of Reclamation, 76 pp. http://www.usbr.gov/uc/progact/salinity/pdfs/PR23final.pdf. Accessed August 2016

  • Bureau of Reclamation (2013) Downscaled CMIP3 and CMIP5 climate projections: release of downscaled CMIP5 climate projections, comparison with preceding information, and summary of user needs. USDI, Bureau of Reclamation, Technical Service Center, Denver, CO, 116 pp. http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/techmemo/downscaled_climate.pdf. Accessed August 2016

  • Castle SL, Thomas BF, Reager JT, Rodell M, Swenson SC, Famiglietti JS (2014) Groundwater depletion during drought threatens future water security of the Colorado River Basin. Geophys Res Lett 41(16):5904–5911. doi:10.1002/2014GL061055

    Article  Google Scholar 

  • Christensen NS, Wood AW, Voisin N, Lettenmaier DP, Palmer RN (2004) The effects of climate change on the hydrology and water resources of the Colorado River basin. Clim Change 62:337–363. doi:10.1023/B:CLIM.0000013684.13621.1f

    Article  Google Scholar 

  • Colorado River Basin Salinity Control Forum (2011) Water quality standards for salinity, Colorado River system, 2011 review. Colorado River Basin Salinity Control Forum, Bountiful, UT, 99 pp. http://www.coloradoriversalinity.org/docs/2011%20REVIEW-October.pdf. Accessed August 2016

  • Colorado River Basin Salinity Control Forum (2013) Colorado River Basin salinity control program, briefing document. Colorado River Basin Salinity Control Forum, Bountiful, UT, 4 pp. http://www.coloradoriversalinity.org/docs/CRBSCP%20Briefing%20Document%202016-05-01.pdf. Accessed August 2016

  • Crosbie RS, McCallum JL, Walker GR, Chiew FHS (2010) Modelling climate-change impacts on groundwater recharge in the Murray-Darling Basin, Australia. Hydrogeol J 18:1639–1656. doi:10.1007/s10040-010-0625-x

    Article  Google Scholar 

  • Crosbie RS, Dawes WR, Charles SP, Mpelasoka FS, Aryal S, Barron O, Summerell GK (2011) Differences in future recharge estimates due to GCMs, downscaling methods and hydrological models. Geophys Res Lett 38(11), L11406. doi:10.1029/2011GL047657

    Article  Google Scholar 

  • Crosbie RS, Pickett T, Mpelasoka FS, Hodgson G, Charles SP, Barron OV (2013) An assessment of the climate change impacts on groundwater recharge at a continental scale using a probabilistic approach with an ensemble of GCMs. Clim Change 117:41–53. doi:10.1007/s10584-012-0558-6

    Article  Google Scholar 

  • Dams J, Salvadore E, Van Daele T, Ntegeka V, Willems P, Batelaan O (2012) Spatio-temporal impact of climate change on the groundwater system. Hydrol Earth Syst Sci 16:1517–1531. doi:10.5194/hess-16-1517-2012

    Article  Google Scholar 

  • Dripps WR, Bradbury KR (2009) The spatial and temporal variability of groundwater recharge in a forested basin in northern Wisconsin. Hydrol Process 24(4):383–392. doi:10.1002/hyp.7497

    Google Scholar 

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252. doi:10.1016/j.jhydrol.2003.08.005

    Article  Google Scholar 

  • Feinstein DT, Hunt RJ, Reeves HW (2010) Regional groundwater-flow model of the Lake Michigan Basin in support of Great Lakes Basin water availability and use studies. US Geol Surv Sci Invest Rep 2010-5109, 379 pp. http://pubs.usgs.gov/sir/2010/5109/. Accessed August 2016

  • Freethey GW, Cordy GE (1991) Geohydrology of Mesozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin. US Geol Surv Prof Pap 1411-C, 118 pp, 6 plates. http://pubs.er.usgs.gov/publication/pp1411C. Accessed August 2016

  • Fry J, Xian G, Jin S, Dewitz J, Homer C, Yang L, Barnes C, Herold N, Wickham J (2011) Completion of the 2006 National Land Cover Database for the conterminous United States. Photogramm Eng Rem S 77(9):858–864. http://www.mrlc.gov/downloadfile2.php?file=September2011PERS.pdf. Accessed August 2016

  • Geldon AL (2003a) Geology of Paleozoic Rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin. US Geol Surv Prof Pap 1411-A, 112 pp, 18 plates. http://pubs.er.usgs.gov/publication/pp1411A. Accessed August 2016

  • Geldon AL (2003b) Hydrologic properties and ground-water flow systems of the Paleozoic rocks in the upper Colorado River basin in Arizona, Colorado, New Mexico, Utah, and Wyoming, excluding the San Juan Basin. US Geol Surv Prof Pap 1411-B, 153 pp, 13 plates. http://pubs.er.usgs.gov/publication/pp1411B. Accessed August 2016

  • Green TR, Taniguchi M, Kooi H, Gurdak JJ, Allen DM, Hiscock KM, Treidel H, Aureli A (2011) Beneath the surface of global change: impacts of climate change on groundwater. J Hydrol 405:532–560. doi:10.1016/j.jhydrol.2011.05.002

    Article  Google Scholar 

  • Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99

    Article  Google Scholar 

  • Holman IP, Tascone D, Hess TM (2009) A comparison of stochastic and deterministic downscaling methods for modelling potential groundwater recharge under climate change in East Anglia, UK: implications for groundwater resource management. Hydrogeol J 17:1629–1641. doi:10.1007/s10040-009-0457-8

    Article  Google Scholar 

  • Holman IP, Allen DM, Cuthbert MO, Goderniaux P (2012) Towards best practice for assessing the impacts of climate change on groundwater. Hydrogeol J 20:1–4. doi:10.1007/s10040-011-0805-3

    Article  Google Scholar 

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). J Hydrol 338:237–250. doi:10.1016/j.jhydrol.2007.02.036

    Article  Google Scholar 

  • Kopytkovskiy M, Geza M, McCray JE (2015) Climate-change impacts on water resources and hydropower potential in the Upper Colorado River Basin. J Hydrol: Reg Stud 3:473–493. doi:10.1016/j.ejrh.2015.02.014

    Google Scholar 

  • Kurylyk BL, MacQuarrie KTB (2013) The uncertainty associated with estimating future groundwater recharge: a summary of recent research and an example from a small unconfined aquifer in a northern humid-continental climate. J Hydrol 492:244–253. doi:10.1016/j.jhydrol.2013.03.043

    Article  Google Scholar 

  • Lawrence Livermore National Laboratory (2016) Downscaled CMIP3 and CMIP5 climate and hydrology projections. http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/dcpInterface.html. Accessed August 2016

  • Liebermann TD, Mueller DK, Kircher JE, Choquette AF (1989) Characteristics and trends of streamflow and dissolved solids in the Upper Colorado River Basin, Arizona, Colorado, New Mexico, Utah, and Wyoming. US Geol Surv Water Suppl Pap 2358, 64 pp, map plate. http://pubs.usgs.gov/wsp/2358/report.pdf. Accessed August 2016

  • Masterson JP, Pope JP, Monti J, Nardi MR, Finkelstein JS, McCoy KJ (2013) Hydrogeology and hydrologic conditions of the Northern Atlantic Coastal Plain aquifer system from Long Island, New York, to North Carolina. US Geol Surv Sci Invest Rep 2013-5133, 76 pp. doi:10.3133/sir20135133. Accessed August 2016

  • Maurer EP, Wood AW, Adam JC, Lettenmaier DP, Nijssen B (2002) A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. J Climate 15(22):3237–3251. doi: 10.1175/1520-0442(2002)015<3237:ALTHBD>2.0.CO;2. Gridded meteorological data obtained from http://www.engr.scu.edu/emaurer/gridded_obs/index_gridded_obs.html Accessed August 2016

  • McCallum JL, Crosbie RS, Walker GR, Dawes WR (2010) Impacts of climate change on groundwater in Australia: a sensitivity analysis of recharge. Hydrogeol J 18:1625–1638. doi:10.1007/s10040-010-0624-y

    Article  Google Scholar 

  • Meixner T, Manning AH, Stonestrom DA, Allen DM, Ajami H, Blasch KW, Brookfield AE, Castro CL, Clark JF, Gochis DJ, Flint AL, Neff KL, Niraula R, Rodell M, Scanlon BR, Singha K, Walvoord MA (2016) Implications of projected climate change for groundwater recharge in the western United States. J Hydrol 534:124–138. doi:10.1016/j.jhydrol.2015.12.027

    Article  Google Scholar 

  • Mileham L, Taylor RG, Todd M, Tindimugaya C, Thompson J (2009) The impact of climate change on groundwater recharge and runoff in a humid, equatorial catchment: sensitivity of projections to rainfall intensity. Hydrolog Sci J 54(4):727–738. doi:10.1623/hysj.54.4.727

    Article  Google Scholar 

  • Miller WP, Butler RA, Piechota T, Prairie J, Grantz K, DeRosa G (2012) Water management decisions using multiple hydrologic models within the San Juan River basin under changing climate conditions. J Water Res Pl-ASCE 138:412–420. doi:10.1061/(ASCE)WR.1943-5452.0000237

    Article  Google Scholar 

  • Miller MP, Susong DD, Shope CL, Heilweil VM, Stolp BJ (2014) Continuous estimation of baseflow in snowmelt-dominated streams and rivers in the Upper Colorado River Basin: a chemical hydrograph separation approach. Water Resour Res 50(8):6986–6999. doi:10.1002/2013WR014939

    Article  Google Scholar 

  • Nyenje PM, Batelaan O (2009) Estimating the effects of climate change on groundwater recharge and baseflow in the upper Ssezibwa catchment, Uganda. Hydrol Sci J 54(4):713–726. doi:10.1623/hysj.54.4.713

    Article  Google Scholar 

  • PRISM Climate Group (2012) Digital climate data. PRISM Climate Group, Oregon State University. http://www.prism.oregonstate.edu. Accessed January 2012

  • Robson SG, Banta ER (1995) Ground water atlas of the United States, segment 2, Arizona, Colorado, New Mexico, Utah. US Geol Surv Hydrologic Invest Atlas 730-C, 32 pp. http://pubs.usgs.gov/ha/ha730/gwa.html. Accessed January 2012

  • Scibek J, Allen DM (2006) Modeled impacts of predicted climate change on recharge and groundwater levels. Water Resour Res 42(11), W11405. doi:10.1029/2005WR004742

    Article  Google Scholar 

  • Smith EA, Westenbroek SM (2015) Potential groundwater recharge for the state of Minnesota using the soil-water-balance model, 1996–2010. US Geol Surv Sci Invest Rep 2015-5038, 85 pp. doi:10.3133/sir20155038. Accessed August 2016

  • Stanton JS, Qi SL, Ryter DW, Falk SE, Houston NA, Peterson SM, Westenbroek SM, Christenson SC (2011) Selected approaches to estimate water-budget components of the High Plains, 1940 through 1949 and 2000 through 2009. US Geol Surv Sci Invest Rep 2011-5183, 79 pp. Available at http://pubs.usgs.gov/sir/2011/5183/. Accessed August 2016

  • Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38(1):55–94

    Article  Google Scholar 

  • Thornthwaite CW, Mather JR (1957) Instructions and tables for computing potential evapotranspiration and the water balance. Publ Climatol 10(3):185–311. doi:10.1007/s10584-011-0148-z

    Google Scholar 

  • Tillman FD (2015) Documentation of input datasets for the soil-water balance groundwater recharge model for the Upper Colorado River Basin. US Geol Surv Open-File Rep 2015-1160, 17 pp. https://pubs.er.usgs.gov/publication/ofr20151160. Accessed August 2016

  • Tillman FD (2016) Soil-water balance groundwater recharge model results for the Upper Colorado River Basin. doi:10.5066/F7ST7MX7

  • Tillman FD, Gangopadhyay S, Pruitt T (2016) Changes in groundwater recharge under projected climate in the upper Colorado River basin. Geophys Res Lett 43:6968–6974. doi:10.1002/2016GL069714

    Article  Google Scholar 

  • Toews WM, Allen DM (2009) Evaluating different GCMs for predicting spatial recharge in an irrigated arid region. J Hydrol 374(3):265–281. doi:10.1016/j.jhydrol.2009.06.022

    Article  Google Scholar 

  • USGS (2016a) Hydrologic unit maps. http://water.usgs.gov/GIS/huc.html. Accessed August 2016

  • USGS (2016b) Ozark plateaus groundwater availability study. http://ar.water.usgs.gov/ozarks/waterbud.html. Accessed August 2016

  • USGS (2016c) Appalachian plateaus groundwater availability study. http://va.water.usgs.gov/appalachianplateaus/waterbud.html. Accessed August 2016

  • Van Vuuren DP (2011) The representative concentration pathways: an overview. Clim Change 109:5–31. doi:10.1007/s10584-011-0148-z

    Article  Google Scholar 

  • Vano JA, Udall B, Cayan DR, Overpeck JT, Brekke LD, Das T, Hartmann HC, Hidalgo HG, Hoerling M, McCabe GJ, Morino K, Webb RS, Werner K, Lettenmaier DP (2014) Understanding uncertainties in future Colorado River streamflow. Bull Am Meteor Soc 95:59–78. doi:10.1175/BAMS-D-12-00228.1

    Article  Google Scholar 

  • Westenbroek SM, Kelson VA, Hunt RJ, Bradbury KR (2010) SWB: a modified Thornthwaite-Mather soil-water balance code for estimating groundwater recharge. US Geol Surv Techniques and Methods 6-A31, 60 pp. http://pubs.usgs.gov/tm/tm6-a31/. Accessed August 2016

  • Wood AW, Maurer EP, Kumar A, Lettenmaier DP (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res-Atmos 107(D20):ACL6-1–ACL6-15. doi:10.1029/2001JD000659.

  • Wood AW, Leung LR, Sridhar V, Lettenmaier DP (2004) Hydrologic implications of dynamical and statistical approaches to downscaling climate model outputs. Clim Change 62:189–216. doi:10.1023/B:CLIM.0000013685.99609.9e

    Article  Google Scholar 

Download references

Acknowledgements

Investigation of groundwater recharge in the upper Colorado River basin under climate change was supported by the Bureau of Reclamation Science and Technology Program and the USGS Groundwater Resources Program. We acknowledge the World Climate Research Programme’s Working Group on Coupled Modelling, which is responsible for the Coupled Model Intercomparison Project (CMIP), and we thank the climate modeling groups (listed in Table S1 of the ESM) for producing and making available their model output. For CMIP, the US Department of Energy’s Program for Climate Model Diagnosis and Intercomparison provides coordinating support and led development of software infrastructure in partnership with the Global Organization for Earth System Science Portals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred D Tillman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 259 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tillman, F.D., Gangopadhyay, S. & Pruitt, T. Understanding the past to interpret the future: comparison of simulated groundwater recharge in the upper Colorado River basin (USA) using observed and general-circulation-model historical climate data. Hydrogeol J 25, 347–358 (2017). https://doi.org/10.1007/s10040-016-1481-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1481-0

Keywords

Navigation