Skip to main content
Log in

Residence time distribution in a large unconfined–semiconfined aquifer in the Argentine Pampas using 3H/3He and CFC tracers

Distribution des temps de résidence dans un large aquifère libre et semi-captif de la Pampa argentine par l’utilisation des traceurs 3H/3He et CFC

Distribución de tiempos de residencia en un gran acuífero no confinado–semiconfinado usando trazadores de 3H/ He y CFC en la región Pampeana de Argentina

H/3He和 CFC示踪剂在阿根廷彭巴地区一个大的非承压-半承压含水层内的滞留时间分布

Distribuição do tempo de residência em um grande aquífero livre–semiconfinado nos Pampas Argentinos usando traçadores 3H/3He e CFC

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The Pampa region in Argentina includes vast unconfined–semiconfined aquifers that local economies depend upon, but detailed knowledge of the associated water resources is still lacking. The Pampeano aquifer in the Pampa plain of Argentina covers around 1.5 million km2. In order to achieve a better understanding of the hydrogeological system through the estimation of mean residence times (MRT), water samples were taken from 12 monitoring wells, drilled at different depths in four locations, and analyzed for environmental tracers. The concentrations of 3H, tritiogenic 3He and chlorofluorocarbons (CFCs) can be explained by mixtures of young waters adjusted to exponential piston flow models (EPM) or dispersion models (DM), and different proportions of tracer-free waters (dead water). The sampling site located very close to the water divide shows a dominance of young waters: 85 % of water best represented by a DM model with a MRT of 3 years. For the shallow wells at other sites, best-fitting models result in a DM with MRT between 20 and 35 years, and proportions of dead water between 40 and 60 %. These results lead to important updates in the conceptual model of the Pampeano aquifer. Large proportions of dead water at a few meters depth can be the consequence of upward flows in a multilayered aquifer or diffusive retardation in the inter-bedded clay layers.

Résumé

La région de la Pampa en Argentine inclut de vastes aquifères libres et semi-captifs dont les économies locales dépendent, mais dont les ressources en eaux associées ne sont pas encore connues en détail. L’aquifère Pampeano dans la plaine de la Pampa en Argentine couvre une superficie de 1.5 million de km2 environ. Afin de mieux comprendre le système hydrogéologique au travers de l’estimation des temps moyens de résidence (TMR), des échantillons d’eau ont été prélevés sur 12 forages de suivi de différentes profondeurs et localisés sur 4 sites. Les traceurs environnementaux ont été analysés pour ces échantillons. Les concentrations en tritium, 3He triogénique et chlorofluorocarbones (CFC) peuvent s’expliquer par un mélange d’eaux jeunes s’ajustant à un modèle piston ou de dispersion et différentes proportions d’eau pré-traceurs (eau morte). Le site échantillonné localisé très près de la ligne de partage des eaux montre une dominance d’eaux jeunes: 85 % de l’eau est bien représentée par un modèle de dispersion avec un temps moyen de résidence de 3 ans. Pour les forages peu profonds des autres sites, le modèle le mieux calé est le modèle dispersif avec un temps moyen de résidence des eaux compris entre 20 et 35 ans et une proportion d’eau « morte » variant entre 40 et 60 %. Les résultats conduisent à une importante mise à jour du modèle conceptuel de l’aquifère Pampeano. Une grande proportion d’eaux mortes à quelques mètres de profondeur peut être la conséquence d’un flux ascendant dans un aquifère multicouche ou d’un retard par diffusion dans les couches argileuses interstratifiées.

Resumen

La región Pampeana en Argentina incluye vastos acuíferos libres y semiconfinados que son la base del desarrollo económico, pero un conocimiento detallado de muchos aspectos hidrogeológicos no se ha alcanzado aún. El acuífero Pampeano tiene un extensión de alrededor de 1.5 millones de km2. Para un mejor conocimiento del funcionamiento hidrológico del sistema a través de la estimación de tiempos medios de residencia (TMR) del agua subterránea, se tomaron muestras en pozos de monitoreo perforados a tres profundidades diferentes en cuatro sitios, y se realizaron análisis de trazadores ambientales. Las concentraciones observadas de 3H, 3He tritiogénico y de clorofluorcarbonos (CFCs) pueden ser explicadas por mezclas de aguas jóvenes ajustadas a modelos de flujo pistón-exponencial (EPM) o modelos de dispersión (DM), con diferentes proporciones de aguas libres de trazadores (aguas muertas). El sitio de muestreo situado más próximo a la divisoria de aguas presenta un 85 % de agua joven, bien representada por un DM y con un TMR de 3 años. En los pozos someros en los restantes sitios, los mejores ajustes se logran con DM y aguas de TMR de entre 30 y 40 años, con mezclas de proporciones de entre un 40 y 60 % de aguas muertas. Estos resultados llevan a rediscutir los modelos conceptuales del acuífero Pampeano. Importantes proporciones de aguas muertas a pocos metros de profundidad pueden ser consecuencia de flujos ascendentes en un sistema multicapas, o de un retardo difusivo en las capas de arcilla intercaladas.

摘要

阿根廷彭巴地区包括大量的非承压-半承压含水层,地方经济依赖于这些含水层,但相关的水资源详细信息匮乏。阿根廷彭巴平原的Pampeano含水层面积大约150万平方千米。为了通过估算平均滞留时间更好地了解水文地质系统,在位于四个地方不同深度的监测井中提取了水样并进行了环境示踪剂分析。3H、由氚产生的3He及含氯氟烃(CFCs)含量可以解释为是由年轻水混合造成的,以适用于指数活塞流模型(EPM)或弥散模型(DM)及无示踪剂水(死水)的不同比例。离分水岭非常近的采样点显示年轻水占优势:85%的水通过滞留时间为三年的弥散模型得到最好的描述。对于其他地方的浅井,最佳适合的模型为平均滞留时间为20到35年间、死水比例为40%到60%的弥散模型。这些结果致使对Pampeano含水层概念模型进行了重要更新。深度几米的死水大部分可能是多层含水层中的向上水流或交互粘土层中弥散阻滞造成的。

Resumo

A região do Pampa na Argentina, inclui vastos aquíferos livres–semiconfinados de que as economias locais dependem, entretanto, um conhecimento detalhado acerca dos recursos hídricos ainda é escasso. O aquífero Pampeano na planície dos Pampas Argentinos, abrange cerca de 1.5 milhões de km2. A fim de aprimorar o conhecimento sobre o sistema hidrogeológico, por meio da estimativa do tempo médio de residência (TMR), amostras de água foram coletadas em 12 poços de monitoramento, perfurados em diferentes profundidades em quatro locais, e analisados os traçadores ambientais. As concentrações de 3H, 3He tritiogênico e clorofluorcarbonetos (CFCs) podem ser explicadas pela mistura de águas jovens ajustadas aos modelos de Fluxo Pistão Exponencial (FPE) ou Modelos de Dispersão (MD), e diferentes proporções de águas sem traçadores (águas antigas). O local de amostragem, localizado muito perto do divisor de águas, mostra uma predominância de águas jovens: 85 % da água melhor representada por um modelo MD com um TMR de 3 anos. Para os poços rasos em outros locais, o modelo mais apropriado resulta em um MD com TMR entre 20 e 35 anos, e proporções de água morta entre 40 e 60 %. Esses resultados conduzem a atualizações importantes no modelo conceitual do aquífero Pampeano. Grandes proporções de águas antigas em alguns metros de profundidade, podem ser consequências do fluxo ascendente de aquíferos multicamadas ou difusão, através das camadas de argila intercaladas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Figure 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Auge M (1996) Similitudes hidrogeológicas entre los acuíferos Pampeano y Puelche en La Plata, Argentina [Hydrogeological similarities between the Pampeano and Puelche aquifers in La Plata, Argentina]. Serie Correlación Geol 11:235–241

    Google Scholar 

  • Auge M (2004) Regiones Hidrogeológicas: República Argentina y provincias de Buenos Aires, Mendoza, Santa Fe [Hydrogeological Regions: Republic of Argentina and provinces of Buenos Aires, Mendoza, Santa Fe]. E-Book, 104 pp. http://tierra.rediris.es/hidrored/ebooks/miguel/RegionesHidrogeol.pdf. Accessed November 2012

  • Bocanegra EM, Martínez DE, Massone HE, Farenga M (2005) Modelación numérica preliminar del flujo subterráneo de la cuenca del Río Quequén, Provincia de Buenos Aires [Preliminary numerical modeling of groundwater flow in the Quequen River catchment, Province of Buenos Aires]. In Blarasin Ed,: IV Congreso Hidrogeológico Argentino. Actas. Tomo 1, Río Cuarto, Córdoba, Argentina, Oct 2005, pp 191–200.

  • Bruno H, Gómez JC, Nollman D, Jordán OD (1981) Aspectos ambientales de la eliminación de tritio por centrales de agua pesada [Environmental aspects of tritium elimination from heavy waters plants]. In: Annals of the 1st World Congress of Engineering and Environment, Buenos Aires, 1981, 16 pp

  • Busenberg E, Plummer LN, Cook PG, Solomon DK, Han LN, Gröning M, Oster H (2006) Sampling and analytical methods. In International Atomic Energy Agency (ed): Use of chlorofluorocarbons in hydrology: a guidebook., Vienna, pp 199–227

  • Cartwrigth I, Waver T, Stone D, Reid M (2007) Constraining modern and historical recharge from bore hydrographs, 3H, 14C, and chloride concentrations: applications to dual-porosity aquifers in dryland salinity areas, Murray Basin, Australia. J Hydrol 332:69–92

    Article  Google Scholar 

  • Cook PG, Herczeg A (2000) Environmental tracers in subsurface hydrology. Kluwer, Amsterdam, 529 pp

    Book  Google Scholar 

  • Cook PG, Solomon DK (1997) Recent advances in dating groundwater: chlorofluorocarbons, 3H/3He and 85Kr. J Hydrol 191:245–265

    Article  Google Scholar 

  • Glok Galli M, Martínez DE, Kruse E, Lima ML, Grondona SI (2014) Hydrochemical and isotopic characterization of the hydrological budget of a MAB Reserve: Mar Chiquita lagoon, province of Buenos Aires, Argentina. Environ Earth Sci 72(8):2821–2835

    Article  Google Scholar 

  • Han L, Groening M (2002) Quick calculator for CFCs. In International Atomic Energy Agency (ed): Guidebook on the use of chlorofluorocarbons in hydrology. IAEA, Vienna, 233 pp

  • IAEA (International Atomic Energy Agency)/WMO (World Meteorological Organization) (2002) The Global Network for Isotopes in Precipitation: the GNIP database. http://isohis.iaea.org. Accessed 10 June 2015

  • Jean-Baptiste P, Mantisi F, Dapoigny A, Stievenard M (1992) Design and performance of a mass spectrometric facility for measuring helium isotopes in natural waters and for low-level tritium determination by the 3He ingrowth method. Appl Radiat Isot 43:881–891

    Article  Google Scholar 

  • Jean-Baptiste P, Fourré E, Dapoigny A, Baumier D, Baglan N, Alanic G (2010) 3He mass spectrometry for very low-level measurement of organic tritium in environmental samples. J Environ Radioact 101:185–190

    Article  Google Scholar 

  • Kipfer R, Aeschbach-Hertig W, Peeters F, Stute M (2002) Noble gases in lakes and ground waters. Rev Mineral Geochem 47: 615-700. doi:10.2138/rmg.2002.47.14

  • Kralik M, Humer F, Fank J, Harum T, Klammler G, Gooddy D, Sültenfuß J, Gerber C, Purtschert R (2014) Using 18O/2H, 3H/3He, 85Kr and CFCs to determine mean residence times and water origin in the Grazer and Leibnitzer Feld groundwater bodies (Austria). Appl Geochem 50:150–163

    Article  Google Scholar 

  • Leibundgut C, Maloszewski P, Külls C (2009) Tracers in hydrology. Wiley-Blackwell, Singapore, 441 pp

    Book  Google Scholar 

  • Maloszewski P, Zuber A (1982) Determining the turnover time of groundwater systems with the aid of environmental tracers, I-models and their applicability. J Hydrol 240:187–205

    Google Scholar 

  • Martínez DE, Bocanegra EM (2002) Hydrochemistry and cationic exchange processes in the coastal aquifer of Mar del Plata, Argentina. Hydrogeol J 10(3):393–408

    Article  Google Scholar 

  • Martínez DE, Solomon K, Dapeña C, Quiroz Londoño M, Massone H (2009) Técnicas modernas en la determinación de la edad del agua: acuífero Pampeano, cuenca del río Quequén Grande (Buenos Aires) [Modern techniques in groundwater age determination: Pampeano aquifer, Quequén Grande River catchment (Buenos Aires)]. Rev Latinoam Hidrol Subterrán 7:83–90

    Google Scholar 

  • Martínez DE, Solomon K, Quiroz Londoño OM, Dapeña C, Massone HE, Benavente MA, Panarello H, Grondona SI (2010) Tiempo medio de residencia en aguas superficiales de la llanura Pampeana: aplicación de isótopos del agua, gases nobles y CFCs en el río Quequén Grande [Mean residence time in surface waters of the Pampa plain: application of water isotopes, noble gases and CFCs to the Quequén Grande River]. In Varni M, Entraigas I, Vives L (eds): Hacia una gestión integrada de los recursos hídricos en zonas de llanura [Towards an integrated management of water resources in plain zones], vol 1. Edit. Martín, Mar del Plata, pp 241–248

  • Martínez DE, Quiroz Londoño OM, Glok Galli M, Grondona SI, Massone HE (2013) Datación del agua subterránea en el acuífero Pampeano del sudeste bonaerense y su significado ambiental [Groundwater dating in the Pampeano aquifer in southeastern Buenos Aires and its environmental significance]. In: González N, Kruse EE, Trovatto MM, Laurencena P (eds) Temas actuales de la hidrología subterránea [Current issues in hydrogeology]. Proceedings of V Seminario Hispano-Latinoamericano de Hidrología Subterránea [Hispano-Latin American Seminar on Hydrogeology]. Universidad Nacional de La Plata, Buenos Aires, pp 279–286

  • Massone HE, Martinez DE, Quiroz Londoño OM, Tomas ML, Ferrante A, Bernasconi V, Farenga MO (2008) Prospección geoeléctrica con fines hidrogeológicos en la cuenca Sur del Partido de General Pueyrredón, Provincia de Buenos Aires, Argentina [Geoelectrical survey for hydrogeological purposes in the southern catchment of General Pueyrredon District]. Rev Asociación Latinoam Hidrol Subterrán para el Desarrollo (ALHSUD) 6:57–68

    Google Scholar 

  • Newman B, Osenbrück K, Aeschbach-Hertig W, Solomon DK, Cook P, Rozanski K, Kipfer R (2010) Dating young groundwaters using environmental tracers: advantages, applications and research needs. Isot Environ Health Stud 46(3):259–278

    Article  Google Scholar 

  • Plummer LN (2005) Dating of young groundwater. In: Aggarwal P, Gat JR, Froenlich FO (eds) Isotopes in the water cycle, 1st edn. Springer, Dordrecht, The Netherlands, pp 193–218

  • Plummer LN, Busenberg E (2006) Chlorofluorocarbons in aquatic environments. In International Atomic Energy Agency (ed): Use of chlorofluorocarbons in hydrology: a guide-book. STI/PUB/1238, IAEA, Vienna, pp 1–8

  • Plummer LN, Busenberg E, Cook PG (2006) Principles of chlorofluorocarbon dating. In International Atomic Energy Agency (ed): Use of chlorofluorocarbons in hydrology: a guidebook. Vienna, pp 17–29

  • Plummer LN, Busenberg E, Han LF (2006) CFCs in binary mixtures of young and old groundwater. In International Atomic Energy Agency (ed): Use of chlorofluorocarbons in hydrology: a guidebook. IAEA, Vienna, pp 59–72

  • Pool M, Carrera J, Alcolea A, Bocanegra E (2015) A comparison of deterministic and stochastic approaches for regional scale inverse modeling on the Mar del Plata aquifer. J Hydrol 53(1):214–229. doi:10.1016/j.jhydrol.2015.09.064

  • Quiroz Londoño OM, Martínez DE, Dapeña C, Massone HE (2008) Hydrogeochemistry and isotope analyses used to determine groundwater recharge and flow in low-gradient catchments of the province of Buenos Aires, Argentina. Hydrogeol J 16(6):1113–1127

    Article  Google Scholar 

  • Quiroz Londoño OM, Martínez DE, Massone HE (2012) Evaluación comparativa de métodos de cálculo de recarga en ambientes de llanura: La Llanura Interserrana Bonaerense (Argentina) como caso de estudio [Comparative evaluation of recharge calculation methods in plain environments: the Buenos Aires Interserrana Plain (Argentina) as study case]. Dyna 171:15–25

  • Rubel F, Kottek M (2010) Observed and projected climate shifts 1901–2100 depicted by world maps of the Köppen-Geiger climate classification. Meteorol Z 19:135–141. doi:10.1127/0941-2948/2010/0430

    Article  Google Scholar 

  • Schulz C, Castro E (2003) Estudio, planificación y explotación del agua subterránea: una trilogía utópica en la República Argentina [Study, planning and exploitation of groundwater: a utopian trilogy in the Argentina Republic], vol 1. In Basile P, Mancinelli AM, Pouey NE, Riccardi GA and Zimmermann E (eds): Proceedings of III Congreso Argentino de Hidrogeología, Rosario, Argentina, Edit. Universidad Nacional de Rosario pp 219–225

  • Silva Busso A, Suero E, Santa Cruz J (2004) Metodología Cartográfica de la Hoja Hidrogeológica Digital N°14 Río Quequén, BuenosAires, Argentina [Catrographic methodology for the digital hydrogeological map no. 14 Quequen River]. Congreso Nacional de Cartografía, Buenos Aires, Proceedings on CD Centro Nacional de Cartografía (ed).

  • Stute M, Schlosser P (2000) Atmospheric noble gases. In: Herczeg AL, Cook PG (eds) Environmental tracers in subsurface hydrology. Kluwer, Boston, pp 349–377

    Chapter  Google Scholar 

  • Suckow A (2012) Lumpy: an interactive Lumped Parameter Modeling code based on MS Access and MS Excel. Proceedings of European Geosciences Union Congress, vol. 12, pp 2763

  • Suckow A (2014) The age of groundwater: definitions and why we do not need this term. Appl Geochem 50:222–230

    Article  Google Scholar 

  • Teruggi ME (1957) The nature and origin of Argentine loess. J Sediment Petrol 27(3):322–332

    Google Scholar 

  • Thornthwaite CW (1948) An approach towards a rational classification of climate. Geogr Rev 38:55–94

    Article  Google Scholar 

  • Ussunoff E (1994) Técnicas en estudios de Llanura [Techniques in the study of plains]. In Bocanegra E and Rapaccini A (eds): Seminario Hispano Argentino sobre Temas Actuales en Hidrología Subterránea [Hispano Argentino Seminar on Current Issues on Hydrogeology], Edit. Universidad Nacional de Mar del Plata, Mar del Plata, Argentina, pp 103–117

  • Varni M, Usunoff E (1999) Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol J 7:180–187

    Article  Google Scholar 

  • Weiss RF (1971) Solubility of helium and neon in water and seawater. J Chem Eng Data 16(2):235–241

    Article  Google Scholar 

  • Zárate MA (2003) Loess of southern South America. Quat Sci Rev 22:1987–2006

    Article  Google Scholar 

Download references

Acknowledgements

This report was developed into a Coordinated Research Project of the International Atomic Energy Agency (IAEA). The authors are very grateful to Dr. Takuya Matsumoto, Technical Officer of the Project, and to all the staff of the Isotope Hydrology Laboratory of IAEA, especially to Dr. L. Han for CFCs determinations. The National Agency of Scientific and Technological Research of Argentina (ANPCyT) and the National Council of Scientific and Technological Research (CONICET) supported the study through the Projects PICT11-0768, PICT2014-1529 and PIP12-0392, respectively. Technician Gustavo Bernava developed the chemical analytical tasks. The Hydrogeology Group team of the “Universidad Nacional de Mar del Plata” (Mar del Plata University) contributed in various ways related to the projects. Comments from the associate editor and three reviewers largely contributed to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. E. Martínez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, D.E., Fourré, E., Londoño, O.M.Q. et al. Residence time distribution in a large unconfined–semiconfined aquifer in the Argentine Pampas using 3H/3He and CFC tracers. Hydrogeol J 24, 1107–1120 (2016). https://doi.org/10.1007/s10040-016-1378-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-016-1378-y

Keywords

Navigation