Skip to main content
Log in

Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model

Modélisation du comportement hydrogéologique d’une source karstique à partir d’un modèle à réservoir non linéaire et conduit

Modelación del comportamiento hidrológico de un manantial kárstico usando un modelo no linear de reservorio conducto

采用非线性储水池管道模型模拟岩溶泉的水文特征

Modelação do comportamento hidrológico de uma nascente cársica usando um modelo reservatório-tubo não-linear

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Karst aquifers are commonly simulated based on conceptual models. However, most karst conceptual models hardly consider the function of turbulent conduits. The conduit network acts as the main draining passage of the karst aquifer and may also have a strong influence on the hydrological processes, especially during storm events. A conceptual model with a nonlinear reservoir and a turbulent pipe (representing the conduit system) in series is proposed according to the basic structure of a typical karst aquifer, to simulate the karst spring. The model indicates whether the spring discharge is influenced by the turbulent pipe; this not only depends on the parameters of the nonlinear reservoir and turbulent pipe, but also depends on the volume of spring discharge itself. Even though the spring discharge is strongly influenced by the turbulent pipe during the storm, this influence decreases with the rainfall intensity and volume of spring discharge. In addition, an ‘evapotranspiration store’ is used to consider the moisture loss through evapotranspiration and to calculate the effective rainfall on the proposed model. Then, this simple conceptual model is used to simulate a karst spring (named S31) near Guilin city, China, with satisfactory results, especially with respect to discharge peaks and recession curves of the spring under storm conditions. The proposed model is also compared with the Vensim model of similar complexity, which has been applied to the same spring catchment. The comparison shows the superiority and better performance of the nonlinear reservoir-pipe model.

Résumé

Les aquifères karstiques sont généralement simulés à l’aide de modèles conceptuels. Cependant, la plupart des modèles conceptuels utilisés pour les aquifères karstiques considèrent difficilement la fonction de l’écoulement turbulent dans les conduits. Le réseau de conduits agit comme le principal réseau de drainage de l’aquifère karstique et peut aussi avoir une forte influence sur les processus hydrologiques, spécialement durant les crues. Un modèle conceptuel avec un réservoir non linéaire et un conduit pour l’écoulement turbulent (schématisant le système de conduits) en série est proposée au regard de la structure d’un aquifère karstique, afin de simuler le débit d’une source karstique. Le modèle montre si le débit de la source est influencé ou non par un écoulement turbulent dans le conduit ; cela ne dépend pas seulement des paramètres du réservoir non linéaire et du conduit, mais dépend aussi du volume du débit de la source. Même si le débit de la source est fortement influencé par l’écoulement turbulent dans le conduit pendant la crue, cette influence décroît avec l’intensité des précipitations et du volume du débit de la source. De plus, un “réservoir évapotranspiration” est utilisé pour prendre en considération la perte d’humidité par l’évapotranspiration et pour calculer la précipitation efficace pour le modèle proposé. Ensuite, ce simple modèle conceptuel est utilisé pour simuler le débit de la source karstique (nommée S31) située à proximité de la ville de Guilin en Chine ; les résultats sont satisfaisants, spécialement eu regard des pics de débits et des courbes de récession de la source en conditions de hautes eaux. Le modèle proposée est également comparé aux résultats obtenus avec le modèle Vensim d’une complexité similaire, appliqué sur le même système karstique. La comparaison des résultats montre la supériorité et la meilleure performance du modèle au réservoir non linéaire et à conduit.

Resumen

Los acuíferos kárstico son comúnmente simulados sobre la base a modelos conceptuales. Sin embargo, la mayoría de los modelos conceptuales de acuíferos kársticos difícilmente consideran la función de los conductos turbulentos. La red de conductos actúa como el pasaje principal de drenaje del acuífero kárstico y puede también tener una fuerte influencia en los procesos hidrológicos, especialmente durante los eventos de tormentas. Se propone un modelo conceptual con un reservorio no linear y un conducto turbulento (que representan a un sistema de conducto) en series de acuerdo a la estructura básica de un acuífero kárstico típico, para simular el manantial kárstico. El modelo indica si la descarga de los manantiales está influenciada por el conducto turbulento: esto no solo depende de los parámetros del reservorio no linear y del conducto turbulento, sino que también depende del volumen de descarga del manantial en sí mismo. Aunque la descarga del manantial está fuertemente influenciada por el conducto turbulento durante la tormenta, esta influencia disminuye con la intensidad de la lluvia y el volumen de descarga del manantial. Además, se utilizó un “almacenamiento de evapotranspiración” para considerar la pérdida de humedad a través de la evapotranspiración y calcular la precipitación efectiva sobre el modelo propuesto. Luego, este modelo conceptual simple se usó para simular un manantial kárstico (denominado S31) cerca de la ciudad de Guilin, China, con resultados satisfactorios, especialmente con respecto a los picos de descarga y las curvas de recesión del manantial bajo condiciones de tormenta. El modelo propuesto es también comparado con el modelo Vensim de similar complejidad, el cual ha sido aplicado en la misma cuenca del manantial. La comparación muestra la superioridad y mejor rendimiento del modelo no linear de reservorio en conducto.

摘要

通常根据概念模型模拟岩溶含水层。然而,大多数岩溶概念模型几乎不考虑湍流管道的作用。管道网充当着岩溶含水层的主要排水通道,并且也对水文过程有强烈的影响,尤其是在暴雨事件期间更是如此。根据典型岩溶含水层的基本结构提出了非线性储水池及湍流管道(代表管道系统)串联一起的概念模型,用来模拟岩溶泉。模型可以显示泉的排泄是否受到了湍流管道的影响;这不仅取决于非线性储水池和湍流管道的参数,而且取决于泉自身的排泄量。尽管在暴雨期间泉排泄受到湍流管道的严重影响,但这种影响随降雨强度和泉排泄量的增加而降低。此外,采用“蒸发蒸腾仓储”来考虑蒸发蒸腾的水分损失并用来计算对所述模型的有效降雨量。然后,这个简单的概念模型用来模拟中国桂林市附近的一个岩溶泉(S31),模拟结果令人满意,特别是有关暴雨条件下泉的排泄峰值和退水曲线。提出的模型也与具有类似复杂性的Vensim模型进行了对比,Vensim模型应用于同一个泉流域。对比显示出了非线性储水池-管道模型的优越性和良好的性能。

Resumo

As simulações em aquíferos cársicos baseiam-se geralmente em modelos concetuais. No entanto, a maioria dos modelos concetuais cársicos dificilmente consideram a função de condutas turbulentas. A rede de condutas atua como a principal zona de passagem da drenagem do aquífero cársico e também pode ter uma forte influência sobre os processos hidrológicos, especialmente durante eventos de tempestade. De acordo com a estrutura básica de um aquífero cársico típico, é proposto um modelo concetual com um reservatório não linear e um tubo de turbulência (que representa o sistema de conduta) em série para simular a nascente cársica. O modelo indica quando é que a descarga da nascente é influenciada pela estrutura tubular turbulenta; isto não depende só dos parâmetros do reservatório não linear e do tubo turbulento, mas também do volume de descarga da própria nascente. Apesar da descarga da nascente ser fortemente influenciada pelo tubo turbulento durante a tempestade, essa influência diminui com a intensidade da precipitação e com o volume de descarga da nascente. Além disso, é usada uma “reserva de evapotranspiração” para considerar a perda de humidade através da evapotranspiração e para calcular a precipitação efetiva no modelo proposto. Então, este modelo concetual simples é usado para simular uma nascente cársica (chamada S31) perto da cidade de Guilin, China, com resultados satisfatórios, especialmente no que diz respeito a picos de descarga e a curvas de recessão da nascente sob condições de tempestade. O modelo proposto é também comparado com o modelo de Vensim, de complexidade semelhante, que tem sido aplicado à mesma nascente. A comparação mostra a superioridade e um melhor desempenho do modelo do reservatório-tubo não-linear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amit H, Lyakhovsky V, Katz A, Starinsky A, Burg A (2002) Interpretation of spring recession curves. Ground Water 40(5):543–551

    Article  Google Scholar 

  • Baedke SJ, Krothe NC (2001) Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis. Water Resour Res 37(1):13–19

    Article  Google Scholar 

  • Bailly-Comte V, Martin JB, Jourde H, Screaton EJ, Pistre S, Langston A (2010) Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams. J Hydrol 386(1–4):55–66

    Article  Google Scholar 

  • Barrett ME, Charbeneau RJ (1997) A parsimonious model for simulating flow in a karst aquifer. J Hydrol 196(1–4):47–65

    Article  Google Scholar 

  • Bauer S, Liedl R, Sauter M (2003) Modeling of karst aquifer genesis: influence of exchange flow. Water Resour Res 39(10):1285

    Google Scholar 

  • Bonacci O, Bojanić D (1991) Rhythmic karst springs. Hydrol Sci J 36(1):35–47

    Article  Google Scholar 

  • Covington MD, Wicks CM, Saar MO (2009) A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers. Water Resour Res 45(11), W11410

    Google Scholar 

  • Covington MD, Banwell AF, Gulley J, Saar MO, Willis I, Wicks CM (2012) Quantifying the effects of glacier conduit geometry and recharge on proglacial hydrograph form. J Hydrol 414–415:59–71

    Article  Google Scholar 

  • de Rooij R, Perrochet P, Graham W (2013) From rainfall to spring discharge: coupling conduit flow, subsurface matrix flow and surface flow in karst systems using a discrete-continuum model. Adv Water Resour 61:29–41

    Article  Google Scholar 

  • Denić-Jukić V, Jukić D (2003) Composite transfer functions for karst aquifers. J Hydrol 274:80–94

    Article  Google Scholar 

  • Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Al-Malki A (2003) Evaluation of aquifer thickness by analysing recession hydrographs: application to the Oman ophiolite hard-rock aquifer. J Hydrol 274(1–4):248–269

    Article  Google Scholar 

  • Dreiss SJ (1983) Linear unit-response functions as indicators of recharge areas for large karst springs. J Hydrol 61(1–3):31–44

    Article  Google Scholar 

  • Dreiss SJ (1989) Regional scale transport in a Karst Aquifer: 2. linear systems and time moment analysis. Water Resour Res 25(1):126–134

    Article  Google Scholar 

  • Eagleman JR (1967) Pan evaporation, potential and actual evapotranspiration. J Appl Meteorol 6(3):482–488

    Article  Google Scholar 

  • Fiorillo F (2011) Tank-reservoir drainage as a simulation of the recession limb of karst spring hydrographs. Hydrogeol J 19(5):1009–1019

    Article  Google Scholar 

  • Fiorillo F (2014) The recession of spring hydrographs, focused on karst aquifers. Water Resour Manag 28(7):1781–1805

    Article  Google Scholar 

  • Fleury P, Plagnes V, Bakalowicz M (2007) Modelling of the functioning of karst aquifers with a reservoir model: application to Fontaine de Vaucluse (South of France). J Hydrol 345(3–4):38–49

    Article  Google Scholar 

  • Fleury P, Ladouche B, Conroux Y, Jourde H, Dörfliger N (2009) Modelling the hydrologic functions of a karst aquifer under active water management: the Lez spring. J Hydrol 365(1–2):235–243

    Article  Google Scholar 

  • Geyer T, Birk S, Liedl R, Sauter M (2008) Quantification of temporal distribution of recharge in karst systems from spring hydrographs. J Hydrol 348(3–4):452–463

    Article  Google Scholar 

  • Goldscheider N, Drew DP (2007) Methods in Karst Hydrogeology. Taylor & Francis, London.

  • Halihan T, Wicks CM (1998) Modeling of storm responses in conduit flow aquifers with reservoirs. J Hydrol 208(1–2):82–91

    Article  Google Scholar 

  • Halihan T, Wicks CM, Engeln JF (1998) Physical response of a karst drainage basin to flood pulses: example of the Devil’s Icebox cave system (Missouri, USA). J Hydrol 204(1–4):24–36

    Article  Google Scholar 

  • Jukić D, Denić-Jukić V (2009) Groundwater balance estimation in karst by using a conceptual rainfall–runoff model. J Hydrol 373(3–4):302–315

    Google Scholar 

  • Kovács A, Perrochet P, Király L, Jeannin P-Y (2005) A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis. J Hydrol 303(1–4):152–164

    Article  Google Scholar 

  • Liedl R, Sauter M, Hückinghaus D, Clemens T, Teutsch G (2003) Simulation of the development of karst aquifers using a coupled continuum pipe flow model. Water Resour Res 39(3):1057

    Google Scholar 

  • Maillet ET (1905) Essais d’hydraulique souterraine et fluviale [Groundwater and river hydraulic testing]. Hermann, Paris

  • Maramathas A, Maroulis Z, Marinos‐Kouris D (2003) Brackish Karstic springs model: application to Almiros spring in Crete. Ground Water 41(5):608–619

    Article  Google Scholar 

  • Martin JB, Dean RW (2001) Exchange of water between conduits and matrix in the Floridan aquifer. Chem Geol 179:145–165

    Article  Google Scholar 

  • Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models, part I: a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Padilla A, Pulidobosch A, Mangin A (1994) Relative importance of baseflow and quickflow from hydrographs of karst spring. Ground Water 32(2):267–277

    Article  Google Scholar 

  • Pandžić K, Vuković I (1999) Vertical gradients of evapotranspiration over Lika and Gorski Kotar region. Croatian Waters 28: 203–216.

  • Peterson E, Wicks C (2005) Fluid and solute transport from a conduit to the matrix in a carbonate aquifer system. Math Geol 37(8):851–867

    Article  Google Scholar 

  • Reimann T, Hill ME (2009) MODFLOW-CFP: a new conduit flow process for MODFLOW-2005. Ground Water 47(3):321–325

    Article  Google Scholar 

  • Reimann T, Geyer T, Shoemaker WB, Liedl R, Sauter M (2011) Effects of dynamically variable saturation and matrix-conduit coupling of flow in karst aquifers. Water Resour Res 47(11), W11503

    Google Scholar 

  • Rimmer A, Hartmann A (2012) Simplified conceptual structures and analytical solutions for groundwater discharge using reservoir equations. In: Nayak DPC (ed) Water resources management and modeling. InTech, Kakinada, India

  • Saller S, Ronayne M, Long A (2013) Comparison of a karst groundwater model with and without discrete conduit flow. Hydrogeol J 21(7):1555–1566

    Article  Google Scholar 

  • Sauer T (2012) Numerical analysis. Pearson, London

  • Tritz S, Guinot V, Jourde H (2011) Modelling the behaviour of a karst system catchment using non-linear hysteretic conceptual model. J Hydrol 397(3–4):250–262

    Article  Google Scholar 

  • White WB (2002) Karst hydrology: recent developments and open questions. Eng Geol 65(2):85–105

    Article  Google Scholar 

  • Yuan DX, Dai AD, Cai WT, Liu ZH, He SY, Mo XP, Zhou SY, Lao WK (1996) Karst water system of a peak cluster catchment in south China’s bare karst region and its mathematic model. Guangxi Normal University Publishing House, Guilin, China

  • Yuan DX (2000) Aspects on the new round land and resources survey in karst rock desertification areas of south China. Carsolog Sin 19(2):103–108

  • Yuan DX (2003) Geological environment and hydrological problems in the karst area. Land Resour Southern China 1:22–25

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant No. 41030746, 41172207, 41102147, 40802063, 41172231 and 41472239) and Research Foundation of Institute of Karst Geology, CAGS in China (KDL2012-09). The authors would like to thank Francesco Fiorillo for his valuable suggestions. The editors of Hydrogeology Journal and the reviewers provided excellent comments to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Chang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Wu, J. & Jiang, G. Modeling the hydrological behavior of a karst spring using a nonlinear reservoir-pipe model. Hydrogeol J 23, 901–914 (2015). https://doi.org/10.1007/s10040-015-1241-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-015-1241-6

Keywords

Navigation