Skip to main content
Log in

Quantifying the loss of available groundwater resource associated with point-source contamination in unused aquifers

Quantification de la perte d’une ressource en eau souterraine associée à la contamination ponctuelle d’aquifères non inexploités

Cuantificación de la pérdida del recurso de agua subterránea disponible asociada con una fuente puntual de contaminación en acuíferos sin uso

定量分析点源污染在未开采含水层中对地下水资源利用造成的损失

Het kwantificeren van de hoeveelheid beschikbaar grondwater dat verloren gaat als gevolg van een punt-bron verontreiniging in niet gebruikte watervoerende pakketten

Quantificação da perda de recursos hídricos subterrâneos disponíveis associada à contaminação pontual de aquíferos não utilizados

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Cost-benefit analysis can be used to identify the optimum remedial strategy for contaminated groundwater, but requires that the benefits of remedial action be quantified. When the groundwater is located in an unused part of an aquifer, it can be difficult to estimate the economic loss of resource. ‘Option values’, which represent the value placed on groundwater for possible future use, may be used. Calculation of the overall loss requires consideration of the spatial (physical) extent of an aquifer where groundwater use is constrained by the presence of contamination and economic elements. An approach is presented for estimating the spatial element, represented as the annualised abstraction loss from the groundwater resource. Two distinct components have been identified based on the potential restriction on location of a new abstraction well: (1) the direct resource loss, which relates to the contaminated zone of the aquifer within which new abstraction is no longer an option, and, (2) the indirect location loss, which relates to the loss of an opportunity to site a new abstraction well in the surrounding uncontaminated aquifer due to the presence of the plume. Methods are presented for their calculation and the approach is illustrated with a case study.

Résumé

Une analyse coût-bénéfice peut être utilisée pour établir la stratégie optimale de décontamination d’une eau souterraine polluée, mais il importe que le bénéfice de l’action de décontamination puisse être quantifié. Quand l’eau souterraine est localisée dans une partie d’aquifère non sollicitée, il peut être difficile d’estimer économiquement le coût de la perte de ressource. Des « valeurs optionnelles » représentant la valeur attribuable à l’eau de la nappe pour une utilisation future possible, peuvent être utilisées. Le calcul de la perte globale implique de considérer l’étendue spatiale de l’aquifère dont l’utilisation est restreinte par la contamination et par des composantes économiques. Une approche est présentée pour estimer la composante spatiale, considérée comme correspondant à la perte de prélèvement annualisée sur la ressource souterraine. Deux composantes distinctes on été identifiées basées sur la restriction potentielle d’implantation d’un nouveau puits de prélèvement: (1) la perte directe de ressource, dans la zone contaminée de l’aquifère où un prélèvement n’est plus une option, et (2) la perte indirecte de ressource par impossibilité d’implanter un nouveau puits de prélèvement dans l’aquifère environnant en raison de la présence du panache de contaminants. Des méthodes de calcul des composantes sont présentées et l’approche est illustrée avec une étude de cas.

Resumen

El análisis de costo-beneficio puede ser usado para identificar la estrategia óptima de remediación para el agua subterránea contaminada, pero requiere que los beneficios de la acción de remediación sean cuantificados. Cuando el agua subterránea está ubicada en una parte sin usar de un acuífero puede ser difícil estimar la pérdida económica del recurso. Se pueden utilizar los ‘valores de opción’, que representan el valor asignado al agua subterránea para un uso futuro posible. El cálculo de pérdidas total requiere la consideración de la extensión espacial (física) de un acuífero cuando el uso del agua subterránea está restringido por la presencia de contaminación y elementos económicos. Se presenta un enfoque para estimar el elemento espacial, representado como la pérdida anualizada por la extracción del recurso de agua subterránea. Se identificaron dos componentes distintos basados en la restricción potencial sobre la ubicación de un nuevo pozo de extracción: (1) la pérdida directa del recurso, que se relaciona con la zona contaminada del acuífero dentro de la cual la nueva extracción ya no constituye una opción, y, (2) la pérdida indirecta de la ubicación, que se relaciona con la pérdida de una oportunidad para situar un nuevo pozo de extracción en un acuífero no contaminada circundante debido a la presencia de la pluma. Se presentan los métodos para su cálculo y se ilustra el enfoque con el caso de estudio.

摘要

通过性价比分析可找到地下水修复的最优方案,但我们要先计算修复带来的经济效益.当地下水位于还未开采的含水层时,很难估计水污染造成的资源损失.或许可用”选项值”来表示地下水未来被利用的经济价值.整体经济损失的计算应考虑污染水体的存在对含水层开采的影响范围以即各种经济因素.本文提出了一个估算地下水开采年度损失的空间单元.鉴于污染水体的存在对水井选址的影响,本文定义了地下水资源损失的两个组成部分, 即(1)直接资源损失:在污染水体内不能打新的抽水井;(2)间接区位损失:在污染水体附近的未污染区,由于污水的存在而失去打井的可能性.本文论述了以上损失的计算方法和算例.

Samenvatting

Kosten-batenanalyses kunnen gebruikt worden ter identificatie van de optimale saneringsstrategie voor verontreinigde locaties. Hiervoor is het wel noodzakelijk om de baten van de saneringsinspanning te kwantificeren. Indien grondwater aanwezig is in een gedeelte van het watervoerend pakket dat niet in gebruik is, kan het moeilijk zijn het economisch verlies te bepalen. ‘Optiewaarden’, die de waarde vertegenwoordigen van mogelijk toekomstig gebruik van grondwater, kunnen hiervoor gebruikt worden. De berekening van het totale verlies vereist inzicht in de ruimtelijke (fysieke) omvang van een watervoerend pakket waarvan het gebruik wordt beperkt door verontreiniging en economische factoren. Dit artikel presenteert een methode om deze ruimtelijk omvang te schatten op basis van de hoeveelheid grondwater die jaarlijks verloren gaat voor nuttig gebruik. Op basis van de mogelijke beperkingen ten aanzien van de positie van een nieuwe onttrekkingsput zijn twee componenten geïdentificeerd: (1) het Direct Verlies van Bruikbaar Water, gerelateerd aan de verontreinigde zone waarbinnen een onttrekking geen optie meer is, en, (2) het Indirecte Locatieverlies, gerelateerd aan het verlies van de mogelijkheid een onttrekkingsput te plaatsen in een niet-verontreinigd deel van het watervoerend pakket, als gevolg van een nabij gelegen verontreiniging pluim. Dit artikel presenteert de methode en illustreert deze aan de hand van een case study.

Resumo

A análise de custo-benefício pode ser usada para identificar a estratégia de remediação ótima para águas subterrâneas contaminadas, mas requere a quantificação dos benefícios da ação corretiva. Quando a água subterrânea está localizada numa parte não utilizada de um aquífero, pode ser difícil estimar a perda económica dos recursos. Podem ser utilizados ‘valores opção’, que representam o valor alocado às águas subterrâneas para possível uso futuro. O cálculo da perda global requere a consideração da extensão espacial (física) de um aquífero, onde o uso de água subterrânea é limitado pela presença de contaminação e por aspetos económicos. É apresentada uma abordagem para estimar o elemento espacial, representado aqui como a perda anual de extração dos recursos hídricos subterrâneos. Foram identificadas duas componentes distintas, com base na potencial restrição na localização de um novo furo: (i) a perda de recursos direta, que diz respeito à zona contaminada do aquífero onde a localização de um novo furo deixa de ser uma opção, e, (ii) a perda de localização indireta, que está relacionada com a perda de oportunidade para a localização de um novo furo nas vizinhanças da zona não contaminada devido à presença da pluma. São apresentados métodos para o seu cálculo e a abordagem é ilustrada com um estudo de caso.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • ASTM International (2010) Standard guide for risk-based corrective action applied at petroleum release sites. ASTM standard E1739 – 95(2010)e1. ASTM International, West Conshohocken, PA

    Google Scholar 

  • Bardos RP, Bone BD, Boyle R, Ellis D, Evans F, Harries N, Smith JWN (2011) Applying sustainable development principles to contaminated land management using the SuRF-UK framework. Remediation 22:77–100. doi:10.1002/rem.20283

    Article  Google Scholar 

  • Bear J, Jacobs M (1965) On the movement of water bodies injected into aquifers. J Hydrol 3:37–57

    Article  Google Scholar 

  • CL:AIRE (2010) A framework for assessing the sustainability of soil and groundwater remediation. CL:AIRE, London, Report available at: www.claire.co.uk/surfuk. Accessed 14 January 2014

    Google Scholar 

  • Department for Environment, Food and Rural Affairs (DEFRA) (2011) Guidelines for environmental risk assessment and management: green leaves III. November 2011. DEFRA, London

    Google Scholar 

  • Environment Agency (2000) Costs and benefits associated with remediation of contaminated groundwater: a framework for assessment. R and D technical report P279. Environment Agency, Bristol, UK

    Google Scholar 

  • Environment Agency (2004) Model procedures for the management of land contamination. Contaminated land report 11. Environment Agency, Bristol, UK

    Google Scholar 

  • Environment Agency (2006) Remedial targets methodology: hydrogeological risk assessment for land contamination. Environment Agency, Bristol, UK

    Google Scholar 

  • Environment Agency (2007) Assessing the value of groundwater. Environment Agency science report SC040016/SR1. Environment Agency, Bristol, UK

    Google Scholar 

  • Environment Agency (2009) Groundwater source protection zones: review of methods. Environment Agency science report SC070004/SR1. Environment Agency, Bristol, UK

    Google Scholar 

  • Environment Agency (2012) Groundwater protection: principles and practice (GP3). Environment Agency report LIT 7562, November 2012 (version 1). Environment Agency, Bristol, UK. Available at: http://www.environment-agency.gov.uk/research/library/publications/144346.aspx. Accessed 14 January 2014

    Google Scholar 

  • Environment Agency (EA) (1999) Costs and benefits associated with remediation of contaminated groundwater: a review of the issues. R and D technical report P278. Environment Agency, Bristol, UK

    Google Scholar 

  • Grubb S (1993) Analytical model for estimation of steady-state capture zones of pumping wells in confined and unconfined aquifers. Ground Water 31(1):27–32

    Article  Google Scholar 

  • Hardisty PE (2010a) Environmental and economic sustainability. CRC, New York

    Book  Google Scholar 

  • Hardisty PE (2010b) Economic and sustainable remediation: how to balance the needs of society, environment, and business. C-004. In: Fields KA, Wickramanayake GB (Chairs) Remediation of chlorinated and recalcitrant compounds: 2010. Seventh International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, May 2010. Battelle Memorial Institute, Columbus, OH. www.battelle.org/chlorcon. Accessed 17 February 2014

  • Hardisty PE, Ozdemiroglu E (2005) The economics of groundwater remediation and protection. CRC, Baco Raton, FL, 336 pp

    Google Scholar 

  • Katic PG, Grafton RQ (2012) Economic and spatial modelling of groundwater extraction. Hydrogeol J 20:831–834

    Article  Google Scholar 

  • Kuwayama Y, Brozović N (2012) Analytical hydrologic models and the design of policy instruments for groundwater-quality management. Hydrogeol J 20:957–972

    Article  Google Scholar 

  • National Rivers Authority (NRA) (1994) A guide to groundwater source protection zones in England and Wales. The Stationery Office, Norwich, UK

    Google Scholar 

  • Paradis D, Martel R (2007) HYBRID: a wellhead protection delineation method for aquifers of limited extent. Technical note 1, Geological Survey of Canada, Ottawa

  • Qureshi ME, Reeson A, Reinelt P, Brozović N, Whitten S (2012) Factors determining the economic value of groundwater. Hydrogeol J 20:821–829

    Article  Google Scholar 

  • Rivett MO, Thornton SF (2008) Monitored natural attenuation of organic contaminants in groundwater: principles and application. Water Manag 161(6):381–392. doi:10.1680/wama.2008.161.6381

    Google Scholar 

  • Schmoll O, Howard G, Chilton J, Chorus I (eds) (2006) Protecting groundwater for health: managing the quality of drinking-water sources. WHO, Geneva; IWA, London

  • Smith JWN (2006) Assessing the risks to groundwater from contaminated soils. Soil Use Manag 21:518–526

    Article  Google Scholar 

  • Smith JWN, Kerrison G (2013) Benchmarking of decision-support tools used for tiered sustainable remediation appraisal. Water Air Soil Pollut. doi:10.1007/s11270-013-1706-y

    Google Scholar 

  • Tait NG, Davison RM, Whittaker JJ, Leharne SA, Lerner DN (2004) Borehole optimisation system (BOS): a GIS based risk analysis tool for optimising the use of urban groundwater. Environ Model Softw 19:1111–1124

    Article  Google Scholar 

  • Tait NG, Davison RM, Leharne SA, Lerner DN (2008) Borehole optimisation system (BOS): a case study assessing options for abstraction of urban groundwater in Nottingham, UK. Environ Model Softw 23:611–621

    Article  Google Scholar 

Download references

Acknowledgements

This research was undertaken as part of a study by Shell Global Solutions UK Ltd. The views expressed are those of the authors alone, and may not reflect the views or policy of their employers. The authors are grateful for helpful discussions with Kirsten Johnstone and Tim Besien at the Environment Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. N. Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bartlett, T.W., Smith, J.W.N. & Hardisty, P.E. Quantifying the loss of available groundwater resource associated with point-source contamination in unused aquifers. Hydrogeol J 22, 749–759 (2014). https://doi.org/10.1007/s10040-014-1114-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1114-4

Keywords

Navigation