Skip to main content

Advertisement

Log in

Seasonal dynamic of a shallow freshwater lens due to irrigation in the coastal plain of Ravenna, Italy

Dynamique saisonnière d’une lentille d’eau douce sous l’effet de l’irrigationdans la plaine côtière de Ravenne, Italie

Dinámica estacional de una lente somera de agua dulce debido a la irrigación enla planicie costera de Ravenna, Italia

意大利Ravenna (拉文那) 沿海平原灌溉造成的浅层淡水透镜体季节性动态变化

Dinâmica sazonal de uma lente pouco profunda de água doce devido a rega naplanície costeira de Ravenna, Itália

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Irrigation in low-lying coastal plains may enhance the formation of fresh groundwater lenses, which counteract salinization of groundwater and soil. This study presents seasonal dynamics of such a freshwater lens and discusses its influence on the salinity distribution of the unconfined aquifer in the coastal plain of Ravenna, Italy, combining field observations with numerical modeling (SEAWAT). The lens originates from an irrigation ditch used as a water reservoir for spray irrigation. The geometry of the freshwater lens shows seasonal differences because of freshwater infiltration during the irrigation season and upconing of deeper saltwater for the remainder of the year. The extent of the freshwater lens is controlled by the presence of nearby drainage ditches. Irrigation also results in a temperature anomaly in the aquifer because of the infiltration of warm water during the irrigation season. The surficial zone in the vicinity of the irrigation ditch is increased considerably in thickness. Finally, different irrigation alternatives and the influence of sea-level rise are simulated. This shows that it is necessary to integrate irrigation planning into the water management strategy of the coastal zone to have maximum benefits for freshening of the aquifer and to make optimal use of the existing infrastructure.

Résumé

L’irrigation dans les basses plaines côtières est susceptible de favoriser la formation de lentilles d’eaudouce, qui s’opposent à la salinisation de l’eau souterraine et des sols. Cette étude présente ladynamique saisonnière d’une telle lentille d’eau douce et discute de son influence sur la distribution desalinité dans l’aquifère à nappe libre de la plaine côtière de Ravenne en Italie, combinant desobservations de terrain avec une modélisation numérique (SEAWAT). La lentille provient d’un fosséd’irrigation utilisé comme réservoir d’eau pour l’irrigation par aspersion. La géométrie de la lentilled’eau douce montre des différences saisonnières à cause de l’infiltration d’eau douce durant la saisond’irrigation et des remontées d’eau salées pendant le reste de l’année. L’extension de la lentille d’eaudouce est contrôlée par la présence des fossés voisins. L’irrigation a aussi comme conséquence uneanomalie thermique dans l’aquifère du fait de l’infiltration d’eau à température ambiante pendant lasaison d’irrigation. L’épaisseur de la zone superficielle augmente considérablement au voisinage dufosse d’irrigation Enfin, diverses alternatives d’irrigation et l’influence de l’augmentation du niveau dela mer sont simulées. Elles montrent que l’intégration d’un schéma d’irrigation dans la stratégie degestion de l’eau en zone côtière est nécessaire pour obtenir les avantages maximum pour adoucir lanappe et faire une utilisation optimale de l’infrastructure existante.

Resumen

La irrigación en planicies costeras bajas puede favorecer la formación de lentes de agua subterráneadulce, las cuales contrarrestan la salinización del agua subterránea y del suelo. Este estudio presenta ladinámica estacional de una de tales lentes de agua dulce y discute su influencia en la distribución de lasalinidad del acuífero no confinado en la planicie costera de Ravenna, Italia, combinandoobservaciones de campo con modelado numerico (SEAWAT). La lente se origina a partir de unaacequia usada como un reservorio de agua para la irrigación por aspersión. La geometría de la lente deagua dulce muestra diferencias estacionales debido a que la infiltración de agua dulce durante de laestación de irrigación y el desplazamiento vertical de agua salina más profunda durante el resto delaño. La extensión de la lente de agua dulce está controlada por la presencia de acequias de drenajecercanas. La irrigación también produce una anomalía en la temperatura del acuífero debido a lainfiltración de agua cálida durante la estación de irrigación. La zona superficial en la vecindad de laacequia de irrigación incrementa considerablemente su espesor. Finalmente, se simulan las diferentesalternativas de irrigación y la influencia del ascenso del nivel del mar. Esto muestra que la integraciónde la planificación de la irrigación dentro de la estrategia de manejo del agua de la zona costera esnecesaria para obtener los máximos beneficios y para proveer de agua dulce al acuífero y hacer un usoóptimo de la infraestructura existente.

摘要

低洼沿海平原灌溉可增加地下淡水透镜体的形成, 从而抵消地下水和土壤的盐度。结合野外观测和数值模拟, 本研究展示了这样的淡水透镜体的季节性动态变化, 论述了淡水透镜体对意大利Ravenna (拉文那) 沿海平原非承压含水层盐度分布的影响。透镜体源自作为喷灌储水池的灌溉渠沟。由于灌溉期间的淡水渗透及其他时间内出现的深部咸水倒锥, 透镜体的几何结构显示出季节性差异。淡水透镜体的范围受附近排水沟的控制。由于灌溉季节温水的渗透, 灌溉也导致含水层温度异常。灌溉沟渠附近的表层带厚度增加非常大。最后, 模拟了不同的灌溉替代选择及海平面上升的影响。表明, 有必要制定综合的沿海地区水管理战略灌溉规划, 以获取含水层淡化的最 大效益及优化利用现有的基础设施。

Resumo

A rega em planícies costeiras de zonas baixas pode induzir a formação de lentes de água doce queimpedem a salinização da água subterrânea e do solo. Este estudo apresenta a dinâmica sazonal deuma destas lentes de água doce e analisa a sua influência na distribuição da salinidade do aquíferofreático na planície costeira de Ravenna, Itália, combinando campos de observação com modelaçãomatemática (SEAWAT). A lente forma-se a partir de um açude que é usado como reservatório de águapara rega por aspersão. A geometria da lente de água doce mostra diferenças sazonais devido àinfiltração de água doce durante o período de rega e ascensão de água salgada mais profunda durante oresto do ano. A dimensão da lente de água doce é controlada pela presença de valas de drenagempróximas. A rega também induz uma anomalia de temperatura no aquífero devido à infiltração de águaquente durante o período de rega. A zona superficial nas proximidades do açude de rega aumentousignificativamente de espessura. Finalmente, foram simuladas alternativas distintas de rega e ainfluência do aumento do nível do mar. Isto demonstra que a integração do planeamento da rega noâmbito da estratégia de gestão de água da zona costeira é necessária para obter o máximo rendimentoda introdução de água doce no aquífero e para fazer o melhor uso da infraestrutura existente.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Amorosi A, Colalongo ML, Pasini G, Preti D (1999) Sedimentary response to late Quaternary sea-level changes in the Romagna Coastal Plain (northern Italy). Sedimentology 46:99–121

    Article  Google Scholar 

  • Amorosi A, Colalongo ML, Fiorini F, Fusco F, Pasini G, Vaiani SC, Sarti G (2004) Paleogeographic and paleoclimatic evolution of the Po Plain from 150-ky core records. Global Planet Change 40:55–78

    Article  Google Scholar 

  • Amorosi A, Centineo MC, Colalongo ML, Fiorini F (2005) Millennial-scale depositional cycles from the Holocene of the Po Plain, Italy. Mar Geol 222:7–18

    Article  Google Scholar 

  • Anderson MP (2005) Heat as a ground water tracer. Ground Water 43(6):951–968

    Article  Google Scholar 

  • Antonellini M, Mollema PN (2010) Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy. Ecol Eng 36:1201–1211

    Article  Google Scholar 

  • Antonellini M, Mollema P, Giambastiani B, Bishop K, Caruso L, Minchio A, Pellegrini L, Sabia M, Ulazzi E, Gabbianelli G (2008) Salt water intrusion in the coastal aquifer of the southern Po Plain, Italy. Hydrogeol J 16:1541–1556

    Article  Google Scholar 

  • Ataieashtiani B, Volker R, Lockington D (1999) Tidal effects on sea water intrusion in unconfined aquifers. J Hydrol 216(1–2):17–31

    Article  Google Scholar 

  • Barlow PM (2003) Ground water in freshwater–saltwater environments of the Atlantic coast. US Geol Surv Circ 1262

  • Bereslavskii EN, Panasenko LA (1990) Fresh water lenses formed by seepage from irrigation channels. Fluid Dyn 25(4):580–584

    Article  Google Scholar 

  • Cibin U, Severi P, Roveri M (2005) Geologic map of Italia 1:50000 no. 240–241Forli-Cervia. The geologic service of the Emilia Romagna Region (Agenzia per la protezione dell’ambiente e per i servizi tecnici (Italie), APAT, Rome

  • Coleman JM (1981) Deltas: processes of deposition and models for exploration. Int. Human Resour. Dev. Corp, Boston, MA

    Google Scholar 

  • Custodio E, Bruggeman GA (1987) Groundwater problems in coastal areas. Studies and reports in hydrology. UNESCO, International Hydrological Programme, Paris

    Google Scholar 

  • Darwish T, Atallah T, El Moujabber M, Khatib N (2005) Salinity evolution and crop response to secondary soil salinity in two agro-climatic zones in Lebanon. Agric Water Manag 78:152–164

    Article  Google Scholar 

  • de Louw PGB, Eeman S, Siemon B, Voortman BR, Gunnink J, van Baaren ES, Oude Essink GHP (2011) Shallow rainwater lenses in deltaic areas with saline seepage. Hydrol Earth Syst Sci 15:3659–3678

    Article  Google Scholar 

  • de Louw PGB, Eeman S, Oude Essink GHP, Vermue E, Post VEA (2013) Rainwater lens dynamics and mixing between infiltrating rainwater and upward saline groundwater seepage beneath a tile-drained agricultural field. J Hydrol 501:133–145

    Article  Google Scholar 

  • EC (2003) Common Implementation Strategy for the Water Framework Directive (2000/60/CE). Guidance Document no. 11. Planning process. Office for Official Publications of the European Communities, Luxembourg

  • Eeman S, Leijnse A, Raats PAC, van der Zee SEATM (2011) Analysis of the thickness of a fresh water lens and of the transition zone between this lens and upwelling saline water. Adv Water Resour 34:291–302

    Article  Google Scholar 

  • Emikh VN (1966) Shape of the fresh-water lens resulting from canal seepage. Fluid Dyn 1(2):115–119

    Google Scholar 

  • Ferguson F, Bense V (2011) Uncertainty in 1D heat-flow analysis to estimate groundwater discharge to a stream. Ground Water 49(3):336–347

    Article  Google Scholar 

  • Giambastiani BMS, Antonellini M, Oude Essink GHP, Stuurman RJ (2007) Saltwater intrusion and water management in the unconfined coastal aquifer of Ravenna (Italy): a numerical model. J Hydrol 340:91–104

    Article  Google Scholar 

  • Greggio N, Mollema P, Antonellini M, Gabbianelli G (2012) Irrigation management in coastal zones to prevent soil and groundwater salinization. In: Abrol V, Peeyush S (ed) Resource management for sustainable agriculture. Intech, Rijeka, Croatia

  • Grinsted A, Moore JC, Jevrejeva S (2009) Reconstructing sea level from paleo and projected temperatures 200 to 2100 AD. Climate Dynam. doi:10.1007/s00382- 008-0507-2

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000). MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water process. US Geol Surv Open-File Rep 00–92

  • IPCC AR4 SYR Core Writing Team, Pachauri RK, Reisinger A, (eds) (2007) Climate Change 2007: synthesis report, contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, IPCC, Geneva

  • Katerji N, van Hoorn JW, Hamdy A, Mastrorilli M (2003) Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods. Agric Water Manag 62:37–66

    Article  Google Scholar 

  • Konikow LF (2010) The secret to successful solute-transport modeling. Ground Water 49(2):144–159

    Article  Google Scholar 

  • Langevin CD, Thorne DT, Dausman AM, Sukop MC, Guo W (2007) SEAWAT Version 4: a computer program for simulation of multi-species solute and heat transport. US Geol. Surv. Tech. Methods, Book 6, chap. A22, US Geological Survey, Reston, VA

  • Lapham WW (1989) Use of temperature profiles beneath streams to determine rates of vertical ground-water flow and vertical hydraulic conductivity. US Geol Surv Water Suppl Pap 2337

  • Maas K (2007) Influence of climate change and sea level rise on a Ghyben Herzberg lens. J Hydrol 347:223–228

    Article  Google Scholar 

  • Marconi V, Antonellini M, Balugani E, Dinelli E (2011) Hydrogeochemical characterization of small coastal wetlands and forests in the southern Po plain (northern Italy). Ecohydrology 4:597–607

    Article  Google Scholar 

  • Mollema PN, Antonellini M (2013) Seasonal variation in natural recharge of coastal aquifers. Hydrogeol J 21:787–797

    Article  Google Scholar 

  • Mollema P, Antonellini M, Gabbianelli G, Laghi M, Marconi V, Minchio A (2012) Climate and water budget change of a Mediterranean coastal watershed, Ravenna, Italy. Environ Earth Sci 65(1):257–276

    Article  Google Scholar 

  • Mollema PN, Antonellini M, Dinelli E, Gabbianelli G, Greggio N, Laghi M, Stuyfzand PJ (2013a) Hydrochemical and physical processes influencing salinization and freshening in Mediterranean low-lying coastal environments. Appl Geochem 34:204–221

    Article  Google Scholar 

  • Mollema PN, Antonellini M, Gabbianelli G, Galloni E (2013b) Water budget management of a coastal pine forest in a Mediterranean catchment (Marina Romea, Ravenna, Italy). Environ Earth Sci 68:1707–1721

    Article  Google Scholar 

  • Oude Essink GHP (2001) Improving fresh groundwater supply: problems and solutions. Ocean Coast Manag 44:429–449

    Article  Google Scholar 

  • Oude Essink GHP, van Baaren ES, de Louw PGB (2010) Effects of climate change on coastal groundwater systems: a modelling study in the Netherlands. Water Resour Res 46, W00F04. doi:10.1029/2009WR008719

  • Parsons ML (1970) Groundwater thermal regime in a glacial complex. Water Resour Res 6(6):1701–1720

    Article  Google Scholar 

  • Robinson C, Li L, Barry D (2007) Effect of tidal forcing on a subterranean estuary. Adv Water Resour 30(4):851–865

    Article  Google Scholar 

  • Sharma L, Greskowiak J, Chittaranjan R, Eckert P, Prommer H (2012) Elucidating temperature effects on seasonal variations of biogeochemical turnover rates during riverbank filtration. J Hydrol 428–429:104–105

    Article  Google Scholar 

  • Silliman SE, Ramirez J, McCabe RL (1995) Quantifying downflow through creek sediments using temperature time series: one-dimensional solution incorporating measured surface temperature. J Hydrol 167(1–4):99–119

    Article  Google Scholar 

  • Simpson TB, Holman IP, Rushton KR (2011) Understanding and modeling spatial drain-aquifer interactions in a low-lying coastal aquifer: the Thurne catchment, Norfolk, UK. Hydrol Process 25:580–592

    Article  Google Scholar 

  • Stuyfzand PJ (1993) Hydrochemistry and hydrology of the coastal dune area of the western Netherlands. PhD Thesis, Vrije Universiteit, The Netherlands

  • Stuyfzand PJ (2008) Base exchange indices as indicators of salinization of freshening of (coastal) aquifers. Proc. 20th Salt Water Intrusion Meeting, Naples, FL, June 2008, pp 262–265

  • Teatini P, Ferronato M, Gambolati G, Bertoni W, Gonella M (2005) A century of land subsidence in Ravenna, Italy. Environ Geol 47:831–846

    Article  Google Scholar 

  • Teatini P, Ferronato M, Gambolati G, Gonella M (2006) Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: modeling the past occurrence and the future trend. Water Resour Res 42:1–19

    Google Scholar 

  • Thorne D, Langevin CD, Sukop MC (2006) Addition of simultaneous heat and solute transport and variable fluid viscosity to SEAWAT. Comput Geosci 32:1758–1768

    Article  Google Scholar 

  • Todd DK (1980) Groundwater hydrology, 2nd edn. Wiley, New York

    Google Scholar 

  • Toth G, Montanarella L, Rusco E (2008) Updated map of salt affected soils in the European Union: threats to soil quality in Europe. Office for Official Publications of the European communities, Luxembourg, pp 61–74

    Google Scholar 

  • Tsimplis MN, Raicich F, Fenoglio-Marc L, Shaw AGP, Marcos M, Somot S, Bergamasco A (2012) Recent developments in understanding sea level rise at the Adriatic coasts. Phys Chem Earth 40–41:59–71

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2006) Occurrence of salt water above fresh water in dynamic equilibrium in coastal groundwater flow systems. Hydrogeol J 14(4):462–472

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2010a) Parameter estimation based on vertical heat transport in the surficial zone. Hydrogeol J 18:931–943

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2010b) Recharge assessment by means of vertical temperature profiles: analysis of possible influences. Hydrol Sci J 55(5):792–804

    Article  Google Scholar 

  • Vandenbohede A, Lebbe L (2011) Heat transport in a coastal groundwater flow system near De Panne, Belgium. Hydrogeol J 19(6):1225–1238

    Article  Google Scholar 

  • Vandenbohede A, Van Houtte E (2012) Heat transport and temperature distribution during managed artificial recharge with surface ponds. J Hydrol 472:77–89

    Article  Google Scholar 

  • Werner AD, Simmons CT (2009) Impact of sea-level rise on sea water intrusion in coastal aquifers. Ground Water 47(2):197–204

    Article  Google Scholar 

  • Werner AD, Bakker M, Post V, Vandenbohede A, Lu C, Ataie-Ashtiani B, Simmons CT, Barry DA (2013) Seawater intrusion processes, investigation and management: recent advances and future challenges. Adv Water Resour 51:3–26

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and user’s guide. US Army Engineer Research and Development Center Contract Report SERDP-99–1. USAERDC, Vicksburg, MI

Download references

Acknowledgements

Alexander Vandenbohede is supported by the Fund for Scientific Research, Flanders (Belgium), where he is currently a postdoctoral fellow. Financial support was provided by the Regione Emilia-Romagna Geological Service and a large part of the hydrochemical data was collected within the framework of the Coastal Salt Water Intrusion project under contract with Eni Spa City of Ravenna, ENI, and the University of Bologna.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Vandenbohede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vandenbohede, A., Mollema, P.N., Greggio, N. et al. Seasonal dynamic of a shallow freshwater lens due to irrigation in the coastal plain of Ravenna, Italy. Hydrogeol J 22, 893–909 (2014). https://doi.org/10.1007/s10040-014-1099-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-014-1099-z

Keywords

Navigation