Skip to main content

Advertisement

Log in

Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States

Revue: Modélisation régionale des écoulements souterrains dans des bassins avec une forte irrigation dans des états sélectionnés de l’Ouest des Etats-Unis d’Amérique

Revisión: Modelos de flujo regional de agua subterránea en cuencas fuertemente irrigadas de estados seleccionados en el oeste de Estados Unidos

综述:美国西部选定区域中大量灌溉盆地的区域地下水径流模拟

Revisão: Modelação regional de fluxo de águas subterrâneas em bacias fortemente irrigadas em estados selecionados no oeste dos Estados Unidos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Water resources in agriculture-dominated basins of the arid western United States are stressed due to long-term impacts from pumping. A review of 88 regional groundwater-flow modeling applications from seven intensively irrigated western states (Arizona, California, Colorado, Idaho, Kansas, Nebraska and Texas) was conducted to provide hydrogeologists, modelers, water managers, and decision makers insight about past modeling studies that will aid future model development. Groundwater models were classified into three types: resource evaluation models (39 %), which quantify water budgets and act as preliminary models intended to be updated later, or constitute re-calibrations of older models; management/planning models (55 %), used to explore and identify management plans based on the response of the groundwater system to water-development or climate scenarios, sometimes under water-use constraints; and water rights models (7 %), used to make water administration decisions based on model output and to quantify water shortages incurred by water users or climate changes. Results for 27 model characteristics are summarized by state and model type, and important comparisons and contrasts are highlighted. Consideration of modeling uncertainty and the management focus toward sustainability, adaptive management and resilience are discussed, and future modeling recommendations, in light of the reviewed models and other published works, are presented.

Résumé

Les ressources en eau de bassins dominés par l’agriculture de la partie occidentale et aride des Etats Unis sont sous tension due aux impacts à long terme des pompages. Une revue de 88 applications de modèles régionaux d’écoulements souterrains dans sept états de l’ouest des Etats-Unis, caractérisés par une irrigation intensive (Arizona, Californie, Colorado, Idaho, Kansas, Nebraska et Texas) a été menée afin de fournir aux hydrogéologues, gestionnaires en eau et aux décideurs des informations concernant les études antérieures de modélisation, qui aideront au développement des futurs modèles. Les modèles d’écoulements souterrains ont été classés selon trois types: modèles d’évaluation de la ressource (39 %), qui quantifient les bilans hydriques et qui agissent en tant que modèles préliminaires à mettre à jour ultérieurement, ou qui consistent en des réétalonnages de modèles plus anciens; modèles de gestion/planification (55 %), utilisés pour examiner et identifier des plans de gestion basés sur la réponse des systèmes aquifères à l’exploitation des ressources ou à des scénarios climatiques, parfois sous contraintes d’usages de l’eau; et des modèles des droits de l’eau (7 %), utilisés pour la prise de décisions relatives à l’administration de l’eau à partir des sorties de modèles et pour quantifier les pénuries en eau encourus par les usagers ou les changements climatiques. Les résultats pour les caractéristiques de 27 modèles sont résumés par état et par type de modèle, et des comparaisons et contrastes importants entre modèles sont mis en évidence. La prise en compte des incertitudes des modèles et de la gestion centrée sur la durabilité, la gestion adaptative et la résilience sont discutées, et des recommandations pour de futures modélisations, à la lumière des modèles examinés et d’autres travaux publiés sont présentées.

Resumen

Los recursos de agua en cuencas dominadas por la agricultura del oeste árido de los Estados Unidos están bajo presión debido a los impactos a largo plazo del bombeo. Se realizó una revisión de 88 aplicaciones de modelos de flujo regional de agua subterránea de siete estados occidentales del intensivamente irrigados (Arizona, California, Colorado, Idaho, Kansas, Nebraska y Texas) para proporcionar a los hidrogeólogos, modelistas, gestores del agua, y tomadores de decisión una visión más profunda acerca de estudios de modelos pasados que ayudarán al desarrollo de futuros modelos. Los modelos de agua subterránea se clasificaron en tres tipos: modelos de evaluación del recurso (39 %), que cuantifican los balances de agua y actúan como modelos preliminares con el propósito de ser actualizados posteriormente, o constituyen recalibraciones de modelos más viejos; modelos de gestión/planificación (55 %), usados para explorar e identificar los planes de gestión basados en la respuesta de sistemas de agua subterránea al desarrollo del agua o escenarios climáticos, algunas veces bajo restricciones en el uso del agua; y modelos de derechos de agua (7 %), usados para tomar decisiones sobre la administración del agua basados en los resultados del modelo y para cuantificar la escasez del agua provocada por usuarios del agua o cambios climáticos. Se resumen los resultados de 27 características de modelos por estados y por tipos de modelo, y se resaltan importantes comparaciones y contrastes. Se discute la consideración de la incertidumbre del modelo y el enfoque de la gestión hacia la sustentabilidad, la gestión adaptativa y la resiliencia, y se presentan recomendaciones futuras de modelados, a la luz de los modelos revisados y otros trabajos publicados.

摘要

由于长期抽水的影响,美国西部干旱地区以农业为主的盆地的地下水资源很紧张。总结了88个应用于7个集中灌溉的西部州(亚利桑那州、加利福尼亚州、科罗拉多州、爱达荷州、堪萨斯州、内布拉斯加州和德克萨斯州)的区域地下水径流模型,提供给水文地质学家、建模者、水资源管理者和决策者,总结过去的建模研究,以有助于将来的模型发展。地下水模型分为三类:第一种是资源评价模型(39 %),用于量化水资源预算,是需要更新的原始模型,或用于校准老的模型;第二种是管理/规划模型(55 %),用于探索或确定管理计划,基于水开发和气候变化下地下水系统的反应,有时在水使用的限制下;第三种是用水权模型(7 %),用于基于模型输出的水行政决策,以及量化由于使用和气候变化导致的水短缺。根据州和模型类型总结了27个模型特点,突出了重要的对比。考虑到模型的不确定性和管理的重点在于可持续性,讨论了适应性管理和应变性,并根据总结的模型和已出版的资料,提出了将来建模的建议。

Resumo

Os recursos hídricos em bacias dominadas por agricultura na região árida do oeste dos Estados Unidos estão sob pressão devido aos impactos de longo prazo de bombeamentos. Foi efetuada uma revisão de 88 aplicações de modelos regionais de fluxo subterrâneo em sete estados do oeste intensamente irrigados (Arizona, Califórnia, Colorado, Idaho, Kansas, Nebrasca e Texas) para fornecer aos hidrogeólogos, modeladores, gestores de recursos hídricos e tomadores de decisão uma visão sobre os estudos de modelação do passado, no sentido de ajudar o desenvolvimento de modelos no futuro. Os modelos de fluxo subterrâneo foram classificados em três tipos: modelos de avaliação dos recursos (39 %), que quantificam os balanços hídricos e atuam como modelos preliminares destinados a serem atualizados posteriormente ou que constituem recalibrações de modelos mais antigos; modelos de gestão/planeamento (55 %), usados para explorar e identificar planos de gestão com base na resposta do sistema das águas subterrâneas a cenários de exploração ou de clima, por vezes sob restrições de uso da água; e modelos de direitos de água (7 %), usados para tomar decisões de administração de água com base nos resultados dos modelos e para quantificar a escassez de água originada por utilizadores ou por alterações climáticas. Os resultados para 27 características dos modelos são resumidos por estado e por tipo de modelo, realçando-se as semelhanças e os contrastes mais importantes. Discutem-se a consideração da incerteza da modelação e o foco da gestão no sentido da sustentabilidade, a gestão adaptativa e a resiliência e presentam-se recomendações para a modelação futura à luz dos modelos avaliados e de outros trabalhos publicados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ackerman DJ (1995) Analysis of steady-state flow and advective transport in the eastern Snake River Plain aquifer system, Idaho. US Geol Surv Water Resour Invest Rep 94–4257. USGA, Reston, VA, 25 pp

  • Ackerman DJ, Rousseau JP, Rattray GW et al (2010) Steady-state and transient models of groundwater flow and advective transport, eastern Snake River Plain aquifer, Idaho National Laboratory and vicinity, Idaho. US Geol Surv Sci Invest Rep 2010–5123. USGS, Reston, VA, 220 pp

    Google Scholar 

  • ADWR (Arizona Department of Water Resources) (2012) Hydrology Division. Arizona Department of Water Resources, Pheonix, AZ. Available at http://www.azwater.gov/AzDWR/Hydrology/default.htm. Cited 18 May 2012

  • Alley WM (2006) Tracking U.S. ground-water reserves for the future. Environment 48(3):10–25

    Article  Google Scholar 

  • Alley WM, Leake SA (2004) The journey from safe yield to sustainability. Ground Water 42(1):12–16

    Article  Google Scholar 

  • Alley WM, Leake SA (2007) Limits to groundwater development: toward a better understanding. Southwest Hydrol. Available at http://www.swhydro.arizona.edu/archive/V6_N3/. Cited 2 Jun 2012

  • Alley WM, Reilly TE, Franke OL (1999) Sustainability of ground-water resources. US Geol Surv Circ 1186. USGS, Reston, VA, 79 pp

    Google Scholar 

  • Anaya R, Jones I (2009) Groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers of Texas. Texas Water Development Board Report 373. TWDB, Austin, TX, 103 pp

    Google Scholar 

  • Anderson MP, Woessner WW (1992) Applied groundwater modeling: simulation of flow and advective transport. Academic, San Diego, CA

    Google Scholar 

  • Anderson MT, Woosley LH Jr (2005) Water availability for the western United States: key scientific challenges. US Geol Surv Circ 1261. USGS, Reston, VA, 85 pp

    Google Scholar 

  • Arnold JG, Allen PM, Bernhardt G (1993) A comprehensive surface-groundwater flow model. J Hydrol 142(1–4):47–69

    Article  Google Scholar 

  • Bachmat Y, Andrews B, Holtz D et al (1978) Utilization of numerical groundwater models for water resource management. US Environmental Protection Agency Report 600/8-78-012. USEPA, Cincinnati, OH, 178 pp

    Google Scholar 

  • Banning ROB (2010) Analysis of the groundwater/surface water interactions in the Arikaree River basin of eastern Colorado. MSc Thesis, Colorado State University, Fort Collins, CO, USA, 166 pp

  • Barfield DW (2009) Collaborative groundwater model development. In: S. Starrett (ed) Proceedings of World Environmental and Water Resources Congress 2009: Great Rivers. Kansas City, Missouri. American Society of Civil Engineers 978-0-7844-1036-3, Reston, VA

    Google Scholar 

  • Barlow PM, Alley WM, Myers DN (2004) Hydrologic aspects of water sustainability and their relation to a national assessment of water availability and use. Water Resour Update 127(1):76–86

    Google Scholar 

  • Blandford TN, Blazer DJ, Calhoun KC et al (2003) Groundwater availability of the southern Ogallala aquifer in Texas and New Mexico: numerical simulations through 2050. Texas Water Development Board Report. TWDB, Austin, TX, 160 pp

    Google Scholar 

  • Bolger BL, Park YJ, Unger AJA et al (2011) Simulating the pre-development hydrologic conditions in the San Joaquin Valley, California. J Hydrol 411:322–330

    Article  Google Scholar 

  • Bredehoeft J (2012) Modeling groundwater flow: the beginnings. Ground Water 50(3):325–329

    Article  Google Scholar 

  • CADWR (California Department of Water Resources) (2005a) Integrated Water Flow Model (IWFM 2.4) theoretical documentation. Hydrology Development Unit, Modeling Support Branch, California Department of Water Resources, Sacramento, CA

    Google Scholar 

  • CADWR (California Department of Water Resources) (2005b) Integrated Water Flow Model (IWFM 2.4) user’s manual. Hydrology Development Unit, Modeling Support Branch, California Department of Water Resources, Sacramento, CA

    Google Scholar 

  • CADWR (California Department of Water Resources) (2011) California water plan, update 2013. California Department of Water Resources, Sacramento, CA

    Google Scholar 

  • Carney CP (2008) Groundwater flow model of the Central Model Unit of the Nebraska Cooperative Hydrology Study (CoHySt) area. CoHySt Technical Committee Report. CoHySt, Grand Island, NE, 87 pp

  • Cash DW (2003) Innovative natural resources management: Nebraska’s model for linking science and decisionmaking. Environ Sci Policy Sustain Dev 45(10):8–20

    Article  Google Scholar 

  • CODWR (Colorado Division of Water Resources) (2004) Rio Grande Decision Support System phase 4, ground water model documentation, preliminary draft. Report for the Colorado Water Conservation Board and Colorado Division of Water Resources, Denver, CO, 138 pp

  • Corell SW, Corkhill EF (1994) A regional groundwater flow model of the Salt River Valley: phase two, Phoenix Active Management Area numerical model, calibration, and recommendations. Arizona Department of Water Resources Report. ADWR, Phoenix, AZ, 92 pp

    Google Scholar 

  • Corkhill EF, Hill BM (1990) Pinal Active Management Area regional groundwater flow model phase two: numerical model, calibration, sensitivity and recommendations. Arizona Department of Water Resources Modeling Report 2. ADWR, Phoenix, AZ, 59 pp

    Google Scholar 

  • Cosens B (2006) The role of hydrology in the resolution of water disputes. J Contemp Water Res Educ 133:17–25

    Article  Google Scholar 

  • Cosgrove DM, Johnson GS (2005) Aquifer management zones based on simulated surface-water response functions. J Water Resour Plan Manag 131(2):89–100

    Article  Google Scholar 

  • Cosgrove DM, Johnson GS, Laney S et al (1999) Description of the IDWR/UI Snake River Plain Aquifer Model (SRPAM). Idaho Water Resources Research Institute, University of Idaho, Moscow, ID, 95 pp

    Google Scholar 

  • Cosgrove DM, Contor BA, Johnson GS (2006) Enhanced Snake Plain Aquifer Model final report. Idaho Water Resources Research Institute Technical Report 06–002. IWRRI, Boise, ID, 120 pp

    Google Scholar 

  • Cosgrove DM, Johnson GS, Tuthill DR (2008) The role of uncertainty in the use of ground water models for administration of water rights. J Contemp Water Res Educ 140(1):30–36

    Article  Google Scholar 

  • Deeds N, Kelley V, Fryar D et al (2003) Groundwater availability model for the southern Carrizo-Wilcox aquifer. Texas Water Development Board Report. TWDB, Austin, TX, 311 pp

    Google Scholar 

  • deSonneville JLJ (1974) Development of a digital ground-water model with application to aquifers in Idaho. PhD Thesis, University of Idaho, Moscow, ID, USA, 228 pp

  • Doherty J (2002) PEST: model-independent parameter estimation, user manual. Watermark Numerical Computing, Brisbane, Australia, 279 pp

    Google Scholar 

  • Dorman TM (1996) The Texas High Plains aquifer system, modeling and projections for the southern region. MSc Thesis, Texas Tech University, Lubbock, TX, USA, 178 pp

  • Durbin TJ (1978) Calibration of a mathematical model of the Antelope Valley ground-water basin, California. US Geol Surv Water Suppl Pap 2046. USGS, Reston, VA, 51 pp

    Google Scholar 

  • Dutton AR, Reedy RC, Mace RE (2001) Saturated thickness in the Ogallala aquifer in the Panhandle Water Planning Area: simulation of 2000 through 2050 withdrawal projections. Bureau of Economic Geology, University of Texas, Austin, TX, 62 pp

    Google Scholar 

  • Ewing JE, Jones TL, Pickens JF et al (2004) Groundwater availability model for the Seymour aquifer. Texas Water Development Board Report. TWDB, Austin, TX, 511 pp

    Google Scholar 

  • Faunt CC, Hanson RT, Belitz K et al (2009) Chapter C: numerical model of the hydrologic landscape and groundwater flow in California’s Central Valley. In: Faunt CC (ed) Groundwater availability of the Central Valley aquifer, California. US Geol Surv Prof Pap 1766. USGS, Reston, VA, pp 121–225

    Google Scholar 

  • Fredericks JW, Labadie W, Altenhofen JM (1998) Decision support system for conjunctive stream-aquifer management. J Water Resour Plan Manag 124(2):69–78

    Article  Google Scholar 

  • Freihoefer A, Mason D, Jahnke P et al (2009) Regional groundwater flow model of the Salt River Valley Phoenix Active Management Area model update and calibration. Arizona Department of Water Resources Modeling Report 19. ADWR, Phoenix, AZ, 39 pp

    Google Scholar 

  • Gannett MW, Wagner BJ, Lite KE Jr (2012) Groundwater simulation and management models for the Upper Klamath basin, Oregon and California. US Geol Surv Sci Invest Rep 2012–5062. USGS, Reston, VA, 92 pp

    Google Scholar 

  • Garabedian SP (1992) Hydrology and digital simulation of the regional aquifer system, eastern Snake River Plain, Idaho. US Geol Surv Prof Pap 1408-F. USGS, Reston, VA, 102 pp

    Google Scholar 

  • Gleeson T, VanderSteen J, Sophocleous MA et al (2010) Groundwater sustainability strategies. Nat Geosci 3(6):378–379

    Article  Google Scholar 

  • Gleeson T, Alley WM, Allen DM et al (2012) Towards sustainable groundwater use: setting long-term goals, backcasting, and managing adaptively. Ground Water 50(1):19–26

    Article  Google Scholar 

  • Gorelick SM (1983) A review of distributed parameter groundwater management modeling methods. Water Resour Res 19(2):305–319

    Article  Google Scholar 

  • Graham DN, Butts MB (2005) Flexible integrated watershed modeling with MIKE SHE. In: Singh VP, Frevert DK (eds) Watershed models. CRC, Boca Raton, FL

    Google Scholar 

  • Hill MC, Tiedeman CR (2007) Effective groundwater model calibration, with analysis of sensitivity, predictions and uncertainty. Wiley, New York

    Book  Google Scholar 

  • Hipke W (2007) Scenarios for the East Salt River Valley sub-basin: an application of the regional groundwater flow model of the Salt River Valley, Arizona. Arizona Department of Water Resources Modeling Report 17. ADWR, Phoenix, AZ, 53 pp

    Google Scholar 

  • Hipke W (2010) A Salt River Valley groundwater flow model application, 100-year predictive scenarios used for the determination of physical availability in the Phoenix Active Management Area. Arizona Department of Water Resources, Modeling Report 22. ADWR, Phoenix, AZ, 80 pp

    Google Scholar 

  • Hipke W, Putman F, Holway JM et al (1996) An application of the regional groundwater flow model of the Salt River Valley, Arizona. Arizona Department of Water Resources, Modeling Report 11. ADWR, Phoenix, AZ, 106 pp

    Google Scholar 

  • Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4(1):1–23

    Article  Google Scholar 

  • Hunt RJ, Zheng C (2012) The current state of modeling. Ground Water 50(3):330–333

    Article  Google Scholar 

  • IDWR (Idaho Department of Water Resources) (1997) Upper Snake River basin study. Idaho Department of Water Resources, Boise, ID, 85 pp

    Google Scholar 

  • Kalf FR, Woolley DR (2005) Applicability and methodology of determining sustainable yield in groundwater systems. Hydrogeol J 13(1):295–312

    Article  Google Scholar 

  • KDA (Kansas Department of Agriculture) (2012a) Basin Management Team. Kansas Department of Agriculture, Division of Water Resources. Available at http://www.ksda.gov/subbasin. Cited 15 May 2012

  • KDA (Kansas Department of Agriculture) (2012b) Division of Water Resources. Kansas Department of Agriculture, Division of Water Resources. Available at http://www.ksda.gov/dwr/. Cited 15 May 2012

  • KDA (Kansas Department of Agriculture) (2012c) Collaborative groundwater model development: building models to inform water management policy. Kansas Department of Agriculture, Division of Water Resources. Available at http://www.ksda.gov/dwr/content/314/cid/1539. Cited 22 May 2012

  • Keasling RD (1975) A digital model of conjunctive-use irrigation in Dawson County, Nebraska. MSc Thesis, University of Nebraska, Lincoln, NE, 126 pp

  • Kendy E (2003) The false promise of sustainable pumping rates. Ground Water 41(1):2–4

    Article  Google Scholar 

  • Kenny JF, Barber NL, Hutson SS et al (2009) Estimated use of water in the United States in 2005. US Geol Surv Circ 1344. USGS, Reston, VA, 53 pp

    Google Scholar 

  • Klemt WB, Duffin GL, Elder GR (1976) Ground-water resources of the Carrizo Aquifer in the Winter Garden area of Texas. Texas Water Development Board Report 210, TWDB, Austin, TX, 30 pp

  • Konikow LF (1986) Predictive accuracy of a ground-water model: lessons from a postaudit. Ground Water 24(2):173–184

    Article  Google Scholar 

  • Konikow LF (2011) Contribution of global groundwater depletion since 1900 to sea-level rise. Geophys Res Lett 38:L17401. doi:10.1029/2011GL048604

    Article  Google Scholar 

  • Konikow LF, Bredehoeft JD (1992) Ground-water models cannot be validated. Adv Water Resour 15(1):75–83

    Article  Google Scholar 

  • Kuniansky EL, Holligan KQ (1994) Simulations of flow in the Edwards-Trinity aquifer system and contiguous hydraulically connected units, west-central Texas. US Geol Surv Water Resour Invest Rep 93–4039. USGS, Reston, VA, 40 pp

    Google Scholar 

  • Langevin CD, Panday S (2012) Future of groundwater modeling. Ground Water 50(3):333–339

    Article  Google Scholar 

  • Lappala EG, Emery PA, Otradovsky FJ (1979) Simulated changes in ground-water levels and streamflow resulting from future development (1970 to 2020) in the Platte River basin, Nebraska. US Geol Surv Water Resour Invest Rep 79–26. USGS, Reston, VA, 82 pp

    Google Scholar 

  • Larson SP (1978) Direct solution algorithm for the two-dimensional ground-water flow model. US Geol Surv Open-File Rep 79–202. USGS, Reston, VA, 25 pp

  • Leake SA, Pool DR, Leenhouts JM (2008) Simulated effects of ground-water withdrawals and artificial recharge on discharge to streams, springs, and riparian vegetation in the Sierra Vista subwatershed of the Upper San Pedro basin, southeastern Arizona. US Geol Surv Sci Invest Rep 2008–5207. USGS, Reston, VA, 14 pp

    Google Scholar 

  • Leighton DA, Phillips SP (2003) Simulation of ground-water flow and land subsidence in the Antelope Valley ground-water basin, California. US Geol Surv Water Resour Invest Rep 03–4016. USGS, Reston, VA, 118 pp

    Google Scholar 

  • Liu G, Wilson B, Whittemore D, Liu G et al (2010) Ground-water model for Southwest Kansas Groundwater Management District No 3. Kansas Geol Surv Open-File Rep 2010–18. University of Kansas, Lawrence, KS, 104 pp

  • Liu G, Wilson B, Whittemore DO et al (2012) Ground-water model for the Southwest Kansas Groundwater Management District No 3: Future scenarios. Kansas Geol Surv Open-File Rep 2012-3. University of Kansas, Lawrence, KS, 121 pp

  • Luckey RR (2008) Estimated stream baseflow depletion by Natural Resources District in the Nebraska Platte basin due to gained and lost groundwater irrigated land after July 1, 1997. CoHySt Technical Committee Report. CoHySt, Grand Isle, NE, 47 pp

  • Luckey RR, Becker MF (1999) Hydrogeology, water use, and simulation of flow in the High Plains aquifer in northwestern Oklahoma, southeastern Colorado, southwestern Kansas, northeastern New Mexico, and northwestern Texas. US Geol Surv Water Resour Invest Rep 99–4104. USGS, Reston, VA, 68 pp

    Google Scholar 

  • Luckey RR, Stephens DM (1987) Effect of grid size on digital simulation of ground-water flow in the southern High Plains of Texas and New Mexico. US Geol Surv Water Resour Invest Rep 87–4085. USGS, Reston, VA, 31 pp

    Google Scholar 

  • Luckey RR, Gutentag ED, Heimes FJ et al (1986) Digital simulation of ground-water flow in the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-D. USGS, Reston, VA, 57 pp

    Google Scholar 

  • Luckey RR, Gutentag ED, Heimes FJ et al (1988) Effects of future ground-water pumpage on the High Plains aquifer in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming. US Geol Surv Prof Pap 1400-E. USGS, Reston, VA, 44 pp

    Google Scholar 

  • Mace RE, Austin B, Angle ES et al (2007) Surface water and groundwater: together again? State Bar of Texas, 8th Annual Changing Face of Water Right in Texas Meeting, San Antonio, TX, 13 pp

  • Markstrom SL, Niswonger RG, Regan RS et al (2008) GSFLOW: coupled ground-water and surface-water flow model based on the integration of the Precipitation-Runoff Modeling System (PRMS) and the Modular Ground-Water Flow Model (MODFLOW-2005). US Geol Surv Tech Meth 6-D1. USGS, Reston, VA, 240 pp

    Google Scholar 

  • Mason DA, Bota L (2006) Regional groundwater flow model of the Tucson Active Management Area Tucson, Arizona: simulation and application. Arizona Department of Water Resources Modeling Report 13, ADWR, Phoenix, AZ, 112 pp

    Google Scholar 

  • Maxwell RM, Kollet SJ, Smith SG et al. (2009) ParFlow user’s manual. International Ground Water Modeling Center Report GWMI 2009–01, IGWMC, Golden, CO, 129 pp

  • McDonald MG, Harbaugh AW (1984) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Open-File Rep 83–875, 528 pp

  • McDonald MG, Harbaugh AW (1988) A modular three-dimensional finite-difference ground-water flow model. US Geol Surv Water Resour Invest Rep 06-A1, 586 pp

  • McMahon PB, Bohlke JK, Carney CP (2006) Vertical gradients in water chemistry and age in the northern High Plains aquifer, Nebraska, 2003. US US Geol Surv Sci Invest Rep 2006–5294. USGS, Reston, VA, 58 pp

    Google Scholar 

  • Miller NL, Dale LL, Brush CF et al (2009) Drought resilience of the California Central Valley surface-ground-water-conveyance system. J Am Water Resour Assoc 45(4):857–866

    Article  Google Scholar 

  • NDNR (Nebraska Department of Water Resources) (2010) 2011 Annual evaluation of availability of hydrologically connected water supplies: determination of fully appropriated. Nebraska Department of Natural Resources, Lincoln, NE, 41 pp

    Google Scholar 

  • Newton GD (1991) Geohydrology of the regional aquifer system, western Snake River Plain, southwestern Idaho. US Geol Surv Prof Pap 1408-G. USGS, Reston, VA, 52 pp

    Google Scholar 

  • Perkins SP, Sophocleous M (1999) Development of a comprehensive watershed model applied to study stream yield under drought conditions. Ground Water 37(3):418–426

    Article  Google Scholar 

  • Peterson SM, Stanton JS, Saunders AT et al (2008) Simulation of ground-water flow and effects of ground-water irrigation on base flow in the Elkhorn and Loup River basins, Nebraska. US Geol Surv Sci Invest Rep 2008–5143. USGS, Reston, VA, 66 pp

    Google Scholar 

  • Peterson TJ, Western AW, Argent RM (2012) Analytical methods for ecosystem resilience: a hydrological investigation. Water Resour Res 48:W10531. doi:10.1029/2012WR012150

    Article  Google Scholar 

  • Petrich CR (2004a) Simulation of ground water flow in the Lower Boise River basin. Idaho Water Resources Research Institute Research Report IWRRI-2004-02. IDWRRI, Boise, ID, 130 pp

    Google Scholar 

  • Petrich CR (2004b) Simulation of increased ground water withdrawals in the Lower Boise River Basin. Idaho Water Resources Research Institute Research Report IWRRI-2004-03. IWRRI, Boise, ID, 49 pp

    Google Scholar 

  • Pinder GF (1969) An iterative digital model for aquifer evaluation. US Geol Surv Open-File Rep 69–207, 35 pp

  • Pinder GF (1970) A digital model for aquifer evaluation. US Geol Surv Tech Water Resour Invest Rep 7-C1, 18 pp

  • Pinder GF, Bredehoeft JD (1968) Application of the digital computer for aquifer evaluation. Water Resour Res 4(4):1069–1093

    Article  Google Scholar 

  • Pinder GF, Frind EO (1972) Application of Galerkin’s procedure to aquifer analysis. Water Resour Res 8(1):108–120

    Article  Google Scholar 

  • Plummer LN, Eggleston JR, Andreasen DC et al (2012) Old groundwater in parts of the upper Patapsco aquifer, Atlantic Coastal Plain, Maryland, USA: evidence from radiocarbon, chlorine-36 and helium-4. Hydrogeol J. doi:10.1007/s10040-012-0871-1

    Google Scholar 

  • Poeter EP, Hill MC (2007) MMA: a computer code for multi-model analysis. US Geol Surv Tech Meth Rep 6-E3. USGS, Reston, VA, 113 pp

    Google Scholar 

  • Poeter E, Hill M, Banta E et al (2005) UCODE-2005 and six other computer codes for universal sensitivity analysis, calibration, and uncertainty evaluation. US Geol Surv Tech Meth Rep 6-a11. USGS, Reston, VA, 283 pp

    Google Scholar 

  • Pool DR (1987) Hydrogeology of McMullen Valley, west-central Arizona. US Geol Surv Water Resour Invest Rep 87–4140. USGS, Reston, VA, 51 pp

    Google Scholar 

  • Pool DR, Dickinson JE (2007) Ground-water flow model of the Sierra Vista subwatershed and Sonoran portions of the Upper San Pedro basin, southeastern Arizona, Unites States, and northern Sonora, Mexico. US Geol Surv Sci Invest Rep 2006–5228. USGS, Reston, VA, 49 pp

    Google Scholar 

  • Prickett TA, Lonnquist CG (1971) Selected digital computer techniques for groundwater resource evaluation. Illinois State Water Survey Bulletin 55, ISWS, Des Moines, IL, 62 pp

  • Prudic DE, Herman ME (1996) Ground-water flow and simulated effects of development in Paradise Valley, a basin tributary to the Humboldt River in Humboldt County, Nevada. US Geol Surv Prof Pap 1409-F, 92 pp

  • Rainwater K, Stovall J, Frailey S et al (2005) Transboundary impacts on regional ground water modeling in Texas. Ground Water 43(5):706–716

    Article  Google Scholar 

  • Ramireddygari SR, Sophocleous MA, Koelliker JK et al (2000) Development and application of a comprehensive simulation model to evaluate impacts of watershed structures and irrigation water use on streamflow and groundwater: the case of Wet Walnut Creek Watershed, Kansas, USA. J Hydrol 236(3–4):223–246

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Højberg AL et al (2007) Uncertainty in the environmental modeling process: a framework and guidance. Environ Model Softw 22(11):1543–1556

    Article  Google Scholar 

  • Refsgaard JC, Højberg AL, Møller I et al (2010) Groundwater modeling in integrated water resources management: visions for 2020. Ground Water 48(5):633–648

    Article  Google Scholar 

  • Republican River Ground Water Modeling Committee (2003) Republican River Compact Administration Ground water Model. Republican River Ground Water Modeling Committee Report, 25 pp. Republican River Compact Administration. Available at http://www.republicanrivercompact.org/. Cited 17 June 2013

  • Rojas R, Kahunde S, Peeters L et al (2010) Application of a multimodel approach to account for conceptual model and scenario uncertainties in groundwater modeling. J Hydrol 394(3–4):416–435

    Article  Google Scholar 

  • Runkle DL, McLean JS (1995) Steady-state simulation of ground-water flow in the Blaine aquifer, southwestern Oklahoma and northwestern Texas. US Geol Surv Open-File Rep 94–387. USGS, Reston, VA, 92 pp

    Google Scholar 

  • Sophocleous M (2000) From safe yield to sustainable development of water resources: the Kansas experience. J Hydrol 235(1–2):27–43

    Article  Google Scholar 

  • Sophocleous M (2004) Ground-water recharge and water budgets of the Kansas High Plains and related aquifers. Kansas Geological Survey Bulletin 249. University of Kansas, Lawrence, KS, 102 pp

    Google Scholar 

  • Sophocleous M (2005) Groundwater recharge and sustainability in the High Plains aquifer in Kansas, USA. Hydrogeol J 13(2):351–365

    Article  Google Scholar 

  • Sophocleous M (2012) On understanding and predicting groundwater response time. Ground Water 50(4):528–540

    Article  Google Scholar 

  • Sophocleous M, Perkins SP (1993) Calibrated models as management tools for stream-aquifer systems: the case of central Kansas, USA. J Hydrol 152:31–56

    Article  Google Scholar 

  • Sophocleous M, Perkins SP (2000) Methodology and application of combined watershed and ground-water models in Kansas. J Hydrol 236(3–4):185–201

    Article  Google Scholar 

  • Sophocleous MA, Koelliker JK, Govindaraju RS et al (1999) Integrated numerical modeling for basin-wide water management: the case of the Rattlesnake Creek basin in south-central Kansas. J Hydrol 214(1–4):179–196

    Article  Google Scholar 

  • Stanton JS, Peterson SM, Fienen MN (2010) Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River basins, Nebraska, 1895–2055: phase two. US Geol Surv Sci Invest Rep 2010–5149. USGS, Reston, VA, 78 pp

    Google Scholar 

  • Stovall JN (2001) Groundwater modeling for the southern High Plains. PhD Thesis, Texas Tech University, Lubbock, TX, 307 pp

  • TWDB (Texas Water Development Board) (2012) Groundwater availability models. Texas Water Development Board. Available at http://www.twdb.state.tx.us/groundwater/models/gam/. Cited 18 May 2012

  • Therrien R, McLaren R, Sudicky EA et al (2010) HydroGeoSphere, a three-dimensional numerical model describing fully-integrated subsurface and surface flow and solute transport. Groundwater Simulations Group, University of Waterloo, Waterloo, Canada, 457 pp

    Google Scholar 

  • Trescott PC (1973) Iterative digital model for aquifer evaluation. US Geol Surv Open-File Rep 73–282, 19 pp

  • Trescott PC (1975) Documentation of finite-difference model for simulation of three-dimensional groundwater flow. US Geol Surv Open-File Rep 75–438, 103 pp

  • Trescott PC, Pinder GF, Larson SP (1976) Finite-difference model for aquifer simulation in two dimensions with results of numerical experiments. US Geol Surv Water Resour Invest Rep 07-C1, 116 pp

  • USDA (U.S. Department of Agriculture) (2002) Acres of irrigated land. US Department of Agriculture, Census of Agriculture, National Agricultural Statistics Service. Available at http://www.nass.usda.gov/research/atlas02/. Cited 21 May 2012

  • van der Gun J, Lipponen A (2010) Reconciling groundwater storage depletion due to pumping with sustainability. Sustainability 2:3418–3435

    Article  Google Scholar 

  • van der Heijde P, Bachmat Y, Bredehoeft J et al (1985) Groundwater management: the use of numerical models, 2nd edn. American Geophysical Union, Washington, DC, 180 pp

    Google Scholar 

  • Walton WC (2011) Aquifer system response time and groundwater supply management. Ground Water 49(2):126–127

    Article  Google Scholar 

  • Whittemore DO, Sophocleous MA, Butler JJ Jr et al (2006) Numerical model of the Middle Arkansas River subbasin. Kansas Geol Surv Open-File Rep. University of Kansas, Lawrence, KS, 126 pp

    Google Scholar 

  • WHO (World Health Organization) (2009) Summary and policy implications, vision 2030: the resilience of water supply and sanitation in the face of climate change. Geneva, Switzerland, 41 pp

  • Wichelns D, Oster JD (2006) Sustainable irrigation is necessary and achievable, but direct costs and environmental impacts can be substantial. Agric Water Manag 86:114–127

    Article  Google Scholar 

  • Williamson AK, Prudic DE, Swain LA (1989) Ground-water flow in the Central Valley, California. US Geol Surv Prof Pap 1401-D. USGS, Reston, VA, 127 pp

    Google Scholar 

  • Zhou Y, Li W (2011) A review of regional groundwater flow modeling. Geosci Front 2(2):205–214

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Science Foundation’s Integrated Graduate Education and Research Traineeship (IGERT) Program (grant DGE-0903469). Special thanks to the water managers and hydrogeologists in academia, industry, and federal, state and local agencies in Arizona: F. Corkhill (ADWR), and W. Hipke (ADWR); California: C. Brush (CADWR), T. Kadir (CADWR), R. Niblack (CADWR), and K. McPherson (USGS); Colorado: K. Watts (USGS), W. Schreuder (Principia Mathematica), J. Heath (CODWR), and R. Alvarado (Colorado Water Conservation Board); Idaho: B. Contor (Idaho Water Resources Research Institute), and G. Newton (IDWR); Kansas: M. Sophocleous (KGS), and A. Lyon (KDA); Nebraska: D. Woodward (Central Platte Natural Resources District), J. Bradley (NDNR), B. Flyr (NDNR), and S. Peterson (USGS); and Texas: K. Rainwater (Texas Tech University), C. Ridgeway (TWDB), D. Thorkildsen (TWDB), and D. Peckham (Thornhill Group, Inc.) for providing information and fruitful discussions about the use of groundwater-flow models and for supplying modeling reports for this review. We acknowledge input from L. Konikow (USGS), I. Chung (Korea Institute of Construction Technology), M. Sophocleous (KGS). Suggestions by Jennifer McIntosh (associate editor of Hydrogeology Journal) and two anonymous reviewers substantially contributed to focusing of this article. Readers that are interested in more detailed aspects of the review beyond the electronic supplementary material (ESM) can contact the authors directly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan R. Rossman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 702 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rossman, N.R., Zlotnik, V.A. Review: Regional groundwater flow modeling in heavily irrigated basins of selected states in the western United States. Hydrogeol J 21, 1173–1192 (2013). https://doi.org/10.1007/s10040-013-1010-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-1010-3

Keywords

Navigation