Skip to main content
Log in

Numerical modeling of contaminant transport in a stratified heterogeneous aquifer with dipping anisotropy

Modèle numérique du transfert d’un polluant dans un aquifère stratifié hétérogène à anisotropie de pendage

Modelado numérico de transporte de contaminante en un acuífero heterogéneo estratificado con anisotropía de inclinación

倾斜沉积导致的各向异性分层非均质含水层中污染物运移数值模型

Modelação numérica do transporte de contaminantes num aquífero heterogéneo com anisotropia inclinada

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The combined influence of dip angle and adsorption heterogeneity on solute transport mechanisms in heterogeneous media can be understood by performing simulations of steady-state flow and transient transport in a heterogeneous aquifer with dipping anisotropy. Reactive and non-reactive contaminant transport in various types of heterogeneous aquifer is studied by simulations. The hydraulic conductivity (K) of the heterogeneous aquifer is generated by HYDRO_GEN with a Gaussian correlation spectrum. By considering the heterogeneity of the adsorption distribution coefficient (K d), a perfect negative correlation between lnK and lnK d is obtained by using the spherical grains model. The generated K and K d are used as input to groundwater flow and transport models to investigate the effects of dipping sedimentary heterogeneity on contaminant plume evolution. Simulation results showed that the magnitude of the dip angle strongly controls the plume evolution in the studied anisotropic and heterogeneous aquifer. The retarded average pore-water velocity (v/R) of the adsorption model significantly controls the horizontal spreading of the plume. The bottom plume is intensively retarded in the zones between the dipping lenses of lower hydraulic conductivity and the no-flow bottom boundary. The implications of these findings are very important for the management of contaminated heterogeneous aquifers.

Résumé

L’influence conjuguée de la valeur de la pente et de l’hétérogénéité de l’adsorption sur les mécanismes de transfert de soluté dans un aquifère hétérogène peut être appréhendée par la réalisation de simulations de l’écoulement permanent et du transfert transitoire dans un aquifère hétérogène à anisotropie de pendage. Le transfert de pollutant réactif et non réactif dans divers types d’aquifères hétérogènes est étudié grâce à ces simulations. La conductivité hydraulique (K) de l’aquifère hétérogène est générée par HYDRO GEN avec spectre de corrélation gaussien. En considérant l’hétérogénéité du coefficient de distribution de l’adsorption (K d ), on obtient une corrélation négative parfaite entre lnK et lnK d en utilisant le modèle des grains sphériques. Le K et le Kd générés sont utilisés comme entrées des modèles d’écoulement souterrain et de transfert, pour explorer les effets de l’hétérogénéité de l’inclinaison des couches sur l’évolution du panache de polluant. Les résultats de la simulation ont montré que la valeur de la pente influence fortement l’évolution du panache dans l’aquifère anisotrope et hétérogène étudié. La vitesse retardée moyenne de l’eau des pores (v/R) du modèle d’adsorption contrôle significativement l’extension horizontale du panache. Le panache de fond est retardé de manière intensive dans les zones entre les lentilles inclinées de plus faible conductivité hydraulique et la limite inférieure privée d’écoulement. Les implications de ces constats sont très importantes pour la gestion des aquifères hétérogènes contaminés.

Resumen

La influencia combinada del ángulo de inclinación y la heterogeneidad de la adsorción sobre los mecanismos de transporte de soluto en medios heterogéneos pueden ser entendida llevando a cabo simulaciones de flujo en estado estacionario y transporte transitorio en una acuífero heterogéneo con una anisotropía en la inclinación. Se estudiaron por simulaciones el transporte de contaminantes reactivos y no reactivos en varios tipos de acuíferos heterogéneos. La conductividad hidráulica (K) de un acuífero heterogéneo está generada por HYDRO_GEN con un espectro de Gausiano de correlación. Considerando una heterogeneidad del coeficiente de distribución de adsorción (K d ), se obtuvo una correlación negativa perfecta entre lnK y lnK d usando el modelo de granos esféricos. Los K y K d generados son usados como entrada al modelo de flujo de agua subterránea y de transporte para investigar los efectos de la heterogeneidad sedimentaria inclinada sobre la evolución de la pluma de contaminantes. Los resultados de la simulación mostraron que la magnitud del ángulo de inclinación influye fuertemente la evolución de la pluma en el acuífero anisotrópico y heterogéneo estudiado. La velocidad poral promedio retardada del agua de poros (v/R) del modelo de adsorción controla significativamente la propagación horizontal de la pluma. La pluma de fondo está intensivamente retardada en las zonas de los lentes inclinados de más baja conductividad hidráulica y en las condiciones del fondo de no flujo. Las implicancias de estos hallazgos son muy importantes para el manejo de los acuíferos heterogéneos contaminados.

摘要

通过具倾斜各相异性的非均质含水层稳定流和溶质运移模拟可以了解倾角和吸附非均质性对非均质介质中溶质运移机制的影响. 诸多活性和非活性污染物在各种非均质含水层中的运移均能用模拟手段来研究. 非均质含水层的渗透系数 (K) 可用基于高斯相关频谱的HYDRO_GEN软件求出. 而吸附分布系数 (K d), 则通过球面颗粒模型, 得出lnK 和 lnK d 间存在显著的负相关关系. 求得的KK d导入地下水水流模型和溶质运移模型, 用于调查倾斜沉积各相异性对污染晕变化的影响. 模拟结果显示, 沉积倾角幅度在很大程度上控制着各向异性和非均质含水层中的污染晕变化. 吸附模型中缓慢的平均孔隙水流速 (v/R) 明显控制污染晕在水平方向上的扩散. 倾斜的低渗透系数透镜体和无流量底部之间地带, 污染晕底部强烈延迟. 上述发现对污染的非均质含水层管理具有重要的指示作用.

Resumo

A influência combinada de camadas inclinadas e de heterogeneidade da adsorção nos mecanismos de transporte de solutos em meios heterogéneos pode ser entendida através de simulações de fluxo estacionário e de transporte transitório num aquífero heterogéneo com anisotropia inclinada. Estudam-se, por simulações, o transporte de contaminantes reativos e não reativos em vários tipos de aquíferos heterogéneos. A condutividade hidráulica (K) dos aquíferos heterogéneos é gerada pelo HYDRO_GEN, com um espetro de correlação gaussiana. Considerando a heterogeneidade do coeficiente de distribuição da adsorção (K d ), é obtida uma correlação negativa perfeita entre lnK e lnK d usando o modelo de grãos esféricos. Os K e K d gerados são usados como entrada para os modelos de fluxo de água subterrânea e de transporte e para investigar os efeitos da heterogeneidade sedimentar inclinada na evolução da pluma de contaminação. Os resultados da simulação mostraram que a magnitude do ângulo de inclinação influencia fortemente a evolução da pluma no aquífero heterogéneo e anisotrópico estudado. A velocidade média retardada da água nos poros (v/R) no modelo de adsorção controla significativamente a expansão horizontal da pluma. A pluma da base é intensamente retardada nas zonas situadas entre as lentes inclinadas de mais baixa condutividade hidráulica e as fronteiras de não-fluxo da base. As implicações destas conclusões são muito importantes para a gestão dos aquíferos heterogéneos contaminados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams EE, Gelhar LW (1992) Field study of dispersion in a heterogeneous aquifer, 2: spatial moments analysis. Water Resour Res 28:3293–3307

    Article  Google Scholar 

  • Allen-King RM, Halket RM, Gaylord DR, Robin MJL (1998) Characterizing the heterogeneity and correlation of perchloroethene sorption and hydraulic conductivity using a facies-based approach. Water Resour Res 34:385–396. doi:10.1029/97wr03496

    Article  Google Scholar 

  • Appold MS, Garven G (1999) The hydrology of ore formation in the Southeast Missouri district: numerical models of topography-driven fluid flow during the Ouachita orogeny. Econ Geol Bull Soc Econ Geol 94:913–935

    Article  Google Scholar 

  • Appold MS, Garven G (2000) Reactive flow models of ore formation in the Southeast Missouri district. Econ Geol Bull Soc Econ Geol 95:1605–1626. doi:10.2113/95.8.1605

    Google Scholar 

  • Appold MS, Nunn JA (2005) Hydrology of the Western Arkoma basin and Ozark platform during the Ouachita orogeny: complications for Mississippi Valley-type ore formation in the Tri-State Zn-Pb district. Geofluids 5:308–325. doi:10.1111/j.1468-8123.2005.00122.x

    Article  Google Scholar 

  • Appold MS, Garven G, Boles JR, Eichhubl P (2007) Numerical modeling of the origin of calcite mineralization in the Refugio-Carneros fault, Santa Barbara Basin, California. Geofluids 7:79–95. doi:10.1111/j.1468-8123.2006.00165.x

    Article  Google Scholar 

  • Ball LB, Ge S, Caine JS, Revil A, Jardani A (2010) Constraining fault-zone hydrogeology through integrated hydrological and geoelectrical analysis. Hydrol J 18:1057–1067. doi:10.1007/s10040-010-0587-z

    Google Scholar 

  • Ball WP, Roberts PV (1991) Long-term sorption of halogenated organic chemicals by aquifer material. 1. Equilibrium. Environ Sci Technol 25:1223–1237

    Article  Google Scholar 

  • Barber Ii LB (1994) Sorption of chlorobenzenes to Cape Cod aquifer sediments. Environ Sci Technol 28:890–897

    Article  Google Scholar 

  • Barber Ii LB, Thurman EM, Runnells DR (1992) Geochemical heterogeneity in a sand and gravel aquifer: effect of sediment mineralogy and particle size on the sorption of chlorobenzenes. J Contam Hydrol 9:35–54

    Article  Google Scholar 

  • Bear J (1972) Dynamics of fluids in porous media. Elsevier, New York

    Google Scholar 

  • Bellin A, Rinaldo A (1995) Analytical solutions for transport of linearly adsorbing solutes in heterogeneous formations. Water Resour Res 31:1505–1511. doi:10.1029/95wr00200

    Article  Google Scholar 

  • Bellin A, Rubin Y (1996) HYDRO_GEN: a spatially distributed random field generator for correlated properties. Stoch Hydrol Hydraul 10:253–278. doi:10.1007/bf01581869

    Article  Google Scholar 

  • Bianchi M, Zheng C (2009) SGeMS: a free and versatile tool for three-dimensional geostatistical applications. Ground Water 47:8–12. doi:10.1111/j.1745-6584.2008.00522.x

    Article  Google Scholar 

  • Bodin J, Delay F, de Marsily G (2003) Solute transport in a single fracture with negligible matrix permeability: 1. fundamental mechanisms. Hydrol J 11:418–433. doi:10.1007/s10040-003-0268-2

    Google Scholar 

  • Boggs JM, Young SC, Beard LM, Gelhar LW, Rehfeldt KR, Adams EE (1992) Field study of dispersion in a heterogeneous aquifer: 1. overview and site description. Water Resour Res 28:3281–3291. doi:10.1029/92wr01756

    Article  Google Scholar 

  • Bosma WJP, Bellin A, van der Zee SEATM, Rinaldo A (1993) Linear equilibrium adsorbing solute transport in physically and chemically heterogeneous porous formations: 2. numerical results. Water Resour Res 29:4031–4043. doi:10.1029/93wr02305

    Article  Google Scholar 

  • Capone DG, Bautista MF (1985) A groundwater source of nitrate in nearshore marine sediments. Nature 313:214–216. doi:10.1038/313214a0

    Google Scholar 

  • Chambon JC, Binning PJ, Jørgensen PR, Bjerg PL (2011) A risk assessment tool for contaminated sites in low-permeability fractured media. J Contam Hydrol 124:82–98. doi:10.1016/j.jconhyd.2011.03.001

    Article  Google Scholar 

  • Chunmiao Z (2010) MT3DMS v5.3 a modular three-dimensional multispecies transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Supplemental user’s guide. The University of Alabama Tuscaloosa, AL

    Google Scholar 

  • Chunmiao Z, Bennett G (1995) Applied contaminant transport modeling: theory and practice. Wiley, New York

    Google Scholar 

  • Comunian A, Renard P, Straubhaar J (2012) 3D multiple-point statistics simulation using 2D training images. Comput Geosci 40:49–65. doi:10.1016/j.cageo.2011.07.009

    Article  Google Scholar 

  • Cooke ML, Simo JA, Underwood CA, Rijken P (2006) Mechanical stratigraphic controls on fracture patterns within carbonates and implications for groundwater flow. Sediment Geol 184:225–239. doi:10.1016/j.sedgeo.2005.11.004

    Article  Google Scholar 

  • Cortis A, Birkholzer J (2008) Continuous time random walk analysis of solute transport in fractured porous media. Water Resour Res 44:W06414

    Google Scholar 

  • Craig J (2008) Analytical solutions for 2D topography-driven flow in stratified and syncline aquifers. Adv Water Res 31:1066–1073. doi:10.1016/j.advwatres.2008.04.011

    Article  Google Scholar 

  • Cunningham JA, Fadel ZJ (2007) Contaminant degradation in physically and chemically heterogeneous aquifers. J Contam Hydrol 94:293–304

    Article  Google Scholar 

  • Cutillo PA, Screaton EJ, Ge SM (2003) Three-dimensional numerical simulation of fluid flow and heat transport within the Barbados Ridge accretionary complex. J Geophys Res-Sol Earth 108:B12. doi:10.1029/2002jb002240

  • Cvetkovic V, Dagan G, Cheng H (1998) Contaminant transport in aquifers with spatially variable hydraulic and sorption properties. Proc R Soc Lond A 454:2173–2207

    Article  Google Scholar 

  • Dagan G, Cvetkovic V (1993) Spatial moments of a kinetically sorbing solute plume in a heterogeneous aquifer. Water Resour Res 29:4053–4061

    Article  Google Scholar 

  • dell’Arciprete D, Bersezio R, Felletti F, Giudici M, Renard P (2012) Comparison of three geostatistical methods for hydrofacies simulation: a test on alluvial sediments. Hydrol J 20:299–311. doi:10.1007/s10040-011-0808-0

    Google Scholar 

  • Elfeki A, Uffink G, Lebreton S (2011) Influence of temporal fluctuations and spatial heterogeneity on pollution transport in porous media. Hydrol J 20(2):283–297. doi:10.1007/s10040-011-0796-0

    Google Scholar 

  • Ezzy T, Cox M, O’Rourke A, Huftile G (2006) Groundwater flow modelling within a coastal alluvial plain setting using a high-resolution hydrofacies approach; Bells Creek plain, Australia. Hydrol J 14:675–688. doi:10.1007/s10040-005-0470-5

    Google Scholar 

  • Freyberg DL (1986) A natural gradient experiment on solute transport in a sand aquifer: 2. spatial moments and the advection and dispersion of nonreactive tracers. Water Resour Res 22(13):2031–2046. doi:10.1029/WR022i013p02031

  • Fuller CC, Davis JA, Coston JA, Dixon E (1996) Characterization of metal adsorption variability in a sand and gravel aquifer, Cape Cod, Massachusetts, U.S.A. J Contam Hydrol 22:165–187. doi:10.1016/0169-7722(95)00090-9

    Article  Google Scholar 

  • Garabedian SP (1987) Large-scale dispersive transport in aquifers: field experiments and reactive transport theory. PhD Thesis. MIT, USA

  • Ge SM (1997) A governing equation for fluid flow in rough fractures. Water Resour Res 33:53–61. doi:10.1029/96wr02588

    Article  Google Scholar 

  • Ge SM, Stover SC (2000) Hydrodynamic response to strike-and dip-slip faulting in a half-space. J Geophys Res-Sol Earth 105:25513–25524. doi:10.1029/2000jb900233

    Article  Google Scholar 

  • Goldscheider N, Neukum C (2010) Fold and fault control on the drainage pattern of a double-karst-aquifer system, Winterstaude, Austrian Alps. Acta Carsol 39:173–186

    Google Scholar 

  • Gremaud V, Goldscheider N, Savoy L, Favre G, Masson H (2009) Geological structure, recharge processes and underground drainage of a glacierised karst aquifer system, Tsanfleuron-Sanetsch, Swiss Alps. Hydrol J 17:1833–1848

    Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00–92, 121 pp

  • Heinz J, Kleineidam S, Teutsch G, Aigner T (2003) Heterogeneity patterns of quaternary glaciofluvial gravel bodies (SW-Germany): application to hydrogeology. Sediment Geol 158:1–23. doi:10.1016/s0037-0738(02)00239-7

    Article  Google Scholar 

  • Hijma MP, Cohen KM, Hoffmann G, Van Der Spek AJF, Stouthamer E (2009) From river valley to estuary: the evolution of the Rhine mouth in the early to middle Holocene (western Netherlands, Rhine-Meuse delta). Geol Mijnbouw 88:13–53

    Google Scholar 

  • Hu BX, Deng F-W, Cushman JH (1995) Nonlocal reactive transport with physical and chemical heterogeneity: linear nonequilibrium sorption with random Kd. Water Resour Res 31:2239–2252. doi:10.1029/95wr01395

    Article  Google Scholar 

  • Hu LY, Chugunova T (2008) Multiple-point geostatistics for modeling subsurface heterogeneity: a comprehensive review. Water Resour Res 44:W11413. doi:10.1029/2008wr006993

  • Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrol J 17:1901–1911. doi:10.1007/s10040-009-0495-2

    Google Scholar 

  • Jiang X-W, Wan L, Cardenas MB, Ge S, Wang X-S (2010) Simultaneous rejuvenation and aging of groundwater in basins due to depth-decaying hydraulic conductivity and porosity. Geophys Res Lett 37:L05403. doi:10.1029/2010gl042387

  • Klingbeil R, Kleineidam S, Asprion U, Aigner T, Teutsch G (1999) Relating lithofacies to hydrofacies: outcrop-based hydrogeological characterisation of Quaternary gravel deposits. Sediment Geol 129:299–310. doi:10.1016/s0037-0738(99)00067-6

    Article  Google Scholar 

  • Koltermann CE, Gorelick SM (1996) Heterogeneity in sedimentary deposits: a review of structure-imitating, process-imitating, and descriptive approaches. Water Resour Res 32:2617–2658. doi:10.1029/96wr00025

    Article  Google Scholar 

  • Lawrence A, Stuart M, Cheney C, Jones N, Moss R (2006) Investigating the scale of structural controls on chlorinated hydrocarbon distributions in the fractured-porous unsaturated zone of a sandstone aquifer in the UK. Hydrol J 14:1470–1482. doi:10.1007/s10040-006-0068-6

    Google Scholar 

  • LeBlanc DR, Garabedian SP, Hess KM, Gelhar LW, Quadri RD, Stollenwerk KG, Wood WW (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: I. experimental design and observed tracer movement. Water Resour Res 27(5):895–910. doi:10.1029/91wr00241

    Google Scholar 

  • Lee S-Y, Carle SF, Fogg GE (2007) Geologic heterogeneity and a comparison of two geostatistical models: sequential Gaussian and transition probability-based geostatistical simulation. Adv Water Res 30:1914–1932. doi:10.1016/j.advwatres.2007.03.005

    Article  Google Scholar 

  • Li L, Barry DA, Stagnitti F, Parlange JY (1999) Submarine groundwater discharge and associated chemical input to a coastal sea. Water Resour Res 35:3253–3259. doi:10.1029/1999wr900189

    Article  Google Scholar 

  • Mackay DM, Freyberg DL, Roberts PV, Cherry JA (1986) A natural gradient experiment on solute transport in a sand aquifer: I. approach and overview of plume movement. Water Resour Res 22(13):2017–2029. doi:10.1029/WR022i013p02017

    Google Scholar 

  • Mariethoz GP, Renard FC, Jaquet O (2006) High resolution stochastic modelling of aquifers, example for a contamination migration problem. Paper presented at the Proceedings of the Swiss Geoscience Meeting, Bern, Switzerland, November 24–25, pp 127–128

  • Mariethoz G, Renard P, Cornaton F, Jaquet O (2009) Truncated plurigaussian simulations to characterize aquifer heterogeneity. Ground Water 47:13–24. doi:10.1111/j.1745-6584.2008.00489.x

    Article  Google Scholar 

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46:W11536. doi:10.1029/2008wr007621

  • Marler J, Ge SM (2003) The permeability of the Elkhorn Fault Zone, South Park, Colorado. Ground Water 41:321–332. doi:10.1111/j.1745-6584.2003.tb02601.x

    Article  Google Scholar 

  • Michael HA, Li H, Boucher A, Sun T, Caers J, Gorelick SM (2010) Combining geologic-process models and geostatistics for conditional simulation of 3-D subsurface heterogeneity. Water Resour Res 46 doi:10.1029/2009wr008414

  • Mustapha H, Dimitrakopoulos R, Chatterjee S (2011) Geologic heterogeneity representation using high-order spatial cumulants for subsurface flow and transport simulations. Water Resour Res 47:W05527. doi:10.1029/2010wr009515

  • Renard P (2007) Stochastic hydrogeology: What professionals really need? Ground Water 45:531–541. doi:10.1111/j.1745-6584.2007.00340.x

    Article  Google Scholar 

  • Roberts PV, Goltz MN, Mackay DM (1986) A natural gradient experiment on solute transport in a sand aquifer: III. retardation estimates and mass balances for organic solutes. Water Resour Res 22(13):2047–2058. doi:10.1029/WR022i013p02047

    Google Scholar 

  • Robin MJL, Sudicky EA, Gillham RW, Kachanoski RG (1991) Spatial variability of strontium distribution coefficients and their correlation with hydraulic conductivity in the Canadian Forces Base Borden aquifer. Water Resour Res 27:2619–2632. doi:10.1029/91wr01107

    Article  Google Scholar 

  • Slomp CP, Van Cappellen P (2004) Nutrient inputs to the coastal ocean through submarine groundwater discharge: controls and potential impact. J Hydrol 295:64–86. doi:10.1016/j.jhyfrol.2004.02.018

    Article  Google Scholar 

  • Stover SC, Ge SM, Weimer P, McBride BC (2001) The effects of salt evolution, structural development, and fault propagation on Late Mesozoic-Cenozoic oil migration: a two-dimensional fluid-flow study along a megaregional profile in the northern Gulf of Mexico Basin. AAPG Bull 85:1945–1966

    Google Scholar 

  • Taniguchi M, Burnett WC, Cable JE, Turner JV (2002) Investigation of submarine groundwater discharge. Hydrol Proc 16:2115–2129. doi:10.1002/hyp.1145

    Article  Google Scholar 

  • Valocchi AJ (1989) Spatial moment analysis of the transport of kinetically adsorbing solutes through stratified aquifers. Water Resour Res 25:273–279. doi:10.1029/WR025i002p00273

    Article  Google Scholar 

  • van den Berg JH, Boersma JR, van Gelder A (2007) Diagnostic sedimentary structures of the fluvial-tidal transition zone: evidence from deposits of the Rhine and Meuse. Geol Mijnbouw 86:287–306

    Google Scholar 

  • Vereecken H, Döring U, Hardelauf H, Jaekel U, Hashagen U, Neuendorf O, Schwarze H, Seidemann R (2000) Analysis of solute transport in a heterogeneous aquifer: the Krauthausen field experiment. J Contam Hydrol 45:329–358. doi:10.1016/s0169-7722(00)00107-8

    Article  Google Scholar 

  • Waite ME, Ge SM, Spetzler H (1999) A new conceptual model for fluid flow in discrete fractures: an experimental and numerical study. J Geophys Res-Sol Earth 104:13049–13059. doi:10.1029/1998jb900035

    Article  Google Scholar 

  • Wang X-S, Jiang X-W, Wan L, Ge S, Li H (2011) A new analytical solution of topography-driven flow in a drainage basin with depth-dependent anisotropy of permeability. Water Resour Res 47:W09603. doi:10.1029/2011wr010507

  • Weiss M, Rubin Y, Adar E, Nativ R (2006) Fracture and bedding plane control on groundwater flow in a chalk aquitard. Hydrol J 14:1081–1093. doi:10.1007/s10040-006-0039-y

    Google Scholar 

  • West MR, Kueper BH (2010) Plume detachment and recession times in fractured rock. Ground Water 48:416–426. doi:10.1111/j.1745-6584.2009.00662.x

    Article  Google Scholar 

  • Yeo IW, Ge SM (2001) Solute dispersion in rock, fractures by non-Darcian flow. Geophys Res Lett 28:3983–3986. doi:10.1029/2001gl013274

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Specific Research on Public Service of Environmental Protection in China (No. 201009009) and the National Natural Science Foundation of China (No. 41272261). The authors thank A. Bellin and Y. Rubin for making their HYDRO_GEN software available readily and free of charge. Use of the HYDRO_GEN software was instrumental in the work reported here. We would like to thank the two anonymous reviewers and the associate editor (M. S. Appold) for their helpful and constructive comments on an earlier version which led to significant improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanqing Wu.

Appendix: Derivation of equivalent hydraulic conductivity for heterogeneous aquifers

Appendix: Derivation of equivalent hydraulic conductivity for heterogeneous aquifers

The equivalent hydraulic conductivity of a thick heterogeneous aquifer which consists of a series of thin parallel homogeneous layers was given by Bear (1972). By assuming the groundwater flow direction is parallel and perpendicular to the homogenous layer (see Figs.  5.8.1 and 5.8.2 of Bear 1972), the equivalent hydraulic conductivities are given by Eqs. (3) and (4), respectively

$$ {\overline{K}}^P={\displaystyle \sum_{\mathrm{i}=1}^N{K}_{\mathrm{i}}{b}_{\mathrm{i}}}/{\displaystyle \sum_{\mathrm{i}=1}^N{b}_{\mathrm{i}}} $$
(3)
$$ b/{\overline{K}}^N={\displaystyle \sum_{\mathrm{i}=1}^N\left({b}_{\mathrm{i}}/{K}_{\mathrm{i}}\right)} $$
(4)

where \( {\overline{K}}^P \) and \( {\overline{K}}^N \) [L/T] are the equivalent hydraulic conductivities for the flow parallel and perpendicular to the homogenous layers, respectively; K i [L/T] and b i [L] are the hydraulic conductivity and thickness of the thin homogenous layer, respectively; and N is the number of the thin layers.

Assuming N is equal to 2, it is easily demonstrated that \( {\overline{K}}^P>{\overline{K}}^N \); in other words, the scenario of equivalent hydraulic conductivity of parallel flow is larger than that of perpendicular flow, which was demonstrated by Bear (1972). It is well known that refraction occurs at the interface of different layers under the flow oblique to the layer. The relationship between the hydraulic conductivity (K) and the refraction angle (δ) is given by

$$ \frac{K_{\mathrm{h}}}{K_{\mathrm{l}}}=\frac{ \tan {\delta}_{\mathrm{l}}}{ \tan {\delta}_{\mathrm{h}}} $$
(5)

where K h and K l represent the high and low hydraulic conductivity layers; δ h and δ l are the refraction angle of the high and low hydraulic conductivity layers, respectively.

In order to derive an equivalent hydraulic conductivity for the flow passing through a heterogeneous aquifer with variable dip angles (see Fig.  5.8.4 of Bear 1972), Eq. (5) was substituted into Eqs. (3) and (4) by Bear (1972), which leads to

$$ \frac{1}{{\overline{K}}^{\delta }}=\frac{{ \sin}^2{\delta}_{\mathrm{e}}}{{\overline{K}}^N}+\frac{{ \cos}^2{\delta}_{\mathrm{e}}}{{\overline{K}}^P} $$
(6)

where \( {\overline{K}}^{\delta } \) [L/T] is the equivalent hydraulic conductivity of the dipping homogeneous aquifer; δ is the dip angle of the homogeneous aquifer; and δ e is the acute angle between the flow direction and the interface of the homogeneous aquifers. The detailed derivation of Eqs. (3), (4) and (6) mentioned in the preceding was given by Bear (1972) and references therein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qin, R., Wu, Y., Xu, Z. et al. Numerical modeling of contaminant transport in a stratified heterogeneous aquifer with dipping anisotropy. Hydrogeol J 21, 1235–1246 (2013). https://doi.org/10.1007/s10040-013-0999-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0999-7

Keywords

Navigation