Skip to main content

Advertisement

Log in

Semi-analytic modeling of transient multi-layer flow with TTim

Modélisation semi-analytique d’écoulements transitoires dans un multi-couche à l’aide de TTim

Modelado semianalítico de flujo multicapa transitorio con TTim

Modelação semi-analítica de escoamento transitório multi-camada com TTim

  • Technical Note
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

TTim is a free code for the semi-analytic simulation of transient flow in multi-layer systems consisting of an arbitrary number of layers. No grid or time-stepping is required, nor does a closed model boundary need to be specified in any of the layers. Currently, TTim includes multi-layer wells and line-sinks, which may be used to simulate transient flow to a variety of hydrogeologic features, including wells with a skin and wellbore storage, incompletely sealed abandoned wells, streams with leaky beds, vertical faults, and horizontal wells; transient forcing needs to be represented by a step function. Other features that may be simulated include vertical anisotropy and the delayed response of the water table. Behind the scenes of TTim, the Laplace-transform analytic element method is applied. TTim is written in Python, with Python scripts used as input files. TTim has many practical applications, including the design of riverbank filtration systems, analysis of aquifer tests near surface-water bodies, design and evaluation of recirculation wells, and modeling of the transient pressure response of proposed carbon geologic sequestration projects. In addition, the short and simple input files and the one-to-one link between analytic elements and hydrogeologic features make TTim well suited for education.

Résumé

TTim est un code libre de droit pour la simultation semi-analytique d’écoulement transitoire de systèmes multi-couches composés d’un nombre arbitraire de couches. Aucune grille ou pas de temps n’est requise, pas plus que la limite fermée du modèle doit être spécifiée pour l’ensemble des couches. Actuellement, TTim comprend des puits multi-couche et des points d’engouffrement, qui peuvent être utilisés pour simuler l’écoulement transitoire pour une variété de configurations hydrogéologiques, telles que des puits avec un effet de peau et un effet capacitif au puits, des puits abandonnés à étanchéité incomplète, des cours d’eau à lit infiltrant, des failles verticales, et des puits horizontaux; le forçage transitoire nécessite d’être représenté par une fonction en échelon. D’autres configurations pouvant être simulées comprennent l’anisotropie verticale et la réponse retardée du niveau piézométrique. Derrière le montage de TTim, la méthode analytique élémentaire de la transformée de Laplace est appliquée. TTim est écrit en langage Python, avec des scripts utilisés comme fichiers d’entrée. TTim possède plusieurs applications pratiques, telles que la conception de systyèmes d’infiltration au niveau des rives de cours d’eau, l’analyse des essais d’aquifère à proximité de cours d’eau, la conception et l’évaluation de puits permettant la recirculation de l’eau et la modélisation des réponses en régime transitoire de la pression dans le cadre de projets de séquestration géologique du CO2. De plus, les fichiers d’entrée sont courts et simples et la relation entre les éléments analytiques et les configurations hydrogéologiques rendent TTim approprié pour l’enseignement.

Resumen

TTim es un programa libre para la simulación semianalítica de flujo transitorio en sistemas multicapas consistentes en un número arbitrario de capas. No se requiere una grilla ni un paso temporal, tampoco es necesario especificar un modelo de bordes cerrados para ninguna de las capas. Actualmente, TTim incluye pozos multicapas y sumideros en líneas, que puede ser usado para simular el flujo transitorio para una variedad de aspectos hidrogeológicos, incluyendo pozos con un almacenamiento pelicular y en el pozo, pozos abandonados incompletamente sellados, corrientes con capas filtrantes, fallas verticales y pozos horizontales; las necesidades transitorias obligan a estar representadas por una función escalón. Otras características que pueden ser simuladas incluyendo la anisotropía vertical y la respuesta retardada de los niveles freáticos. Detrás de las presentaciones de TTim, se aplicó un método de elementos analíticos de la transformada de Laplace. TTim está escrito en Python, con escritura de Python usada como archivos de entrada. TTim tiene muchas aplicaciones prácticas, inclusive el diseño de sistema de filtración de las márgenes del río, análisis de ensayos de acuíferos próximos a los cuerpos de agua superficial, diseño y evaluación de pozos de recirculación, y modelado de respuesta transitoria de la presión en proyectos de secuestro geológico de carbón. Además, los cortos y simples archivos de entradas y el enlace uno a uno entre los elementos analíticos y los aspectos hidrogeológicos hacen que el TTim sea muy apropiado para la educación.

Resumo

O TTim é um software livre para simulação semi-analítica do escoamento transitório em sistemas multi-camada constituídos por um número arbitrário de camadas. O software não requer nenhuma discretização espacial ou passos de tempo, nem é necessário especificar um limite de modelo fechado para qualquer das camadas. Presentemente, o TTim inclui poços e sumidouros lineares multi-camada que podem ser usados para simular o escoamento transitório para uma variedade de entidades hidrogeológicas, incluindo poços com efeito de pele e com armazenamento, poços abandonados com selagem incompleta, cursos de água com leito drenante, falhas verticais e poços horizontais; o caráter transitório tem que ser representado por uma função em degraus. Outras funcionalidades que podem ser simuladas incluem a anisotropia vertical e a resposta diferida do nível freático. Por trás do TTrim é aplicado o método de elementos analíticos da transformada de Laplace. O TTim é escrito em linguagem Python, sendo usados ficheiros Python como entrada de dados. O TTim tem muitas aplicações práticas, incluindo o projeto de sistemas de filtração em margem de cursos de água, a análise de ensaios em aquíferos próximos de corpos de água superficial, o projeto e a avaliação de poços de recirculação e a modelação da pressão transitória resultante dos propostos projetos de sequestro geológico de carbono. Para além disso, os ficheiros de entrada, curtos e simples, e a conexão direta entre os elementos analíticos e as caraterísticas hidrogeológicas tornam o TTim bem adaptado ao ensino.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Anderson EI, Bakker M (2008) Groundwater flow through anisotropic fault zones in multi-aquifer systems. Water Resour Res 44(11):W11433. doi:10.1029/2008WR00692

    Article  Google Scholar 

  • Bakker M (2007) Simulating groundwater flow to surface water features with leaky beds using analytic elements. Adv Water Resour 30(3):399–407

    Article  Google Scholar 

  • Bakker M (2012) TTim, a multi-aquifer transient analytic element model version 0.2. Available at http://www.ttim.googlecode.com. Accessed 16 January 2013

  • Bakker M (2013) Analytic modeling of transient multi-layer flow. In: Mishra P, Kuhlman KL (eds) Recent advances in hydrogeology. Springer, Heidelberg

  • Bakker M, Kelson VA (2009) Writing analytic element programs in Python. Ground Water 47(6):828–834

    Article  Google Scholar 

  • Bakker M, Kuhlman KL (2011) Computational issues and applications of line-elements to model subsurface flow governed by the modified Helmholtz equation. Adv Water Resour 34:1186–1194

    Article  Google Scholar 

  • Bakker M, Kelson VA, Luther KH (2005) Multi-layer analytic element modeling of radial collector wells. Ground Water 43(6):926–934

    Google Scholar 

  • Carlson F, Randall J (2012) MLU: a Windows application for the analysis of aquifer tests and the design of well fields in layered systems. Ground Water 50(4):504–510

    Article  Google Scholar 

  • Cihan A, Zhou Q, Birkholzer JT (2011) Analytical solutions for pressure perturbation and fluid leakage through aquitards and wells in multi-layered aquifer systems. Water Resour Res 47(10):W10504. doi:10.1029/2011WR010721

    Article  Google Scholar 

  • De Hoog FR, Knight JH, Stokes AN (1982) An improved method for numerical inversion of Laplace transforms. SIAM J Sci Stat Comput 3(3):357–366

    Article  Google Scholar 

  • Enthought (2013) Enthought Python Distribution. http://www.enthought.com. Accessed 16 January 2013

  • Fitts CR (2010) Modeling aquifer systems with analytic elements and subdomains. Water Resour Res 46(7):W07521. doi:10.1029/2009WR008331

    Article  Google Scholar 

  • Furman A, Neuman SP (2003) Laplace-transform analytic element solution of transient flow in porous media. Adv Water Resour 26(12):1229–1237

    Article  Google Scholar 

  • Haitjema HM (1995) Analytic element modeling of groundwater flow. Academic, San Diego

  • Harbaugh AW (2005) MODFLOW-2005, the US Geological Survey modular ground-water model: the ground-water flow process. US Geological Survey Techniques and Methods vol 6-A16. USGS, Reston, VA

  • Hemker CJ, Maas C (1987) Unsteady flow to wells in layered and fissured aquifer systems. J Hydrol 90(3–4):231–249

    Article  Google Scholar 

  • Hemker K, Post V (2011) MLU for Windows, Well flow modeling in multilayer aquifer systems. Available from http://www.microfem.com. March 2013

  • Hunt RJ (2006) Ground water modeling applications using the analytic element method. Ground Water 44(1):5–15

    Article  Google Scholar 

  • Hunter JD (2007) Matplotlib: a 2D graphics environment. Comput Sci Eng 9(3):86–91

    Article  Google Scholar 

  • Janković I, Barnes R (1999) High-order line elements in modeling two-dimensional groundwater flow. J Hydrol 226(3–4):211–223

    Article  Google Scholar 

  • Janković I, Barnes R (2001) PhreFlow: computer program for modeling three-dimensional unconfined transient groundwater flow and transport with partially penetrating wells and inhomogeneities shaped as rotational ellipsoids version 1.1. Available from http://www.groundwater.buffalo.edu/software/phreflow/PhreFlowMain.html. March 2013

  • Kruseman GP, De Ridder NA (1990) Analysis and evaluation of pumping test data, 2nd edn. ILRI Publ. 47, ILRI, Wageningen, The Netherlands

  • Kuhlman KL, Neuman SP (2009) Laplace-transform analytic-element method for transient porous-media flow. J Eng Math 64(2):113–130

    Article  Google Scholar 

  • Louwyck A, Vandenbohede A, Bakker M, Lebbe L (2012) Simulation of axisymmetric flow towards wells: a finite-difference approach. Comput Geosci 44:136–145

    Article  Google Scholar 

  • McLane C (2012) AnAqSim: analytic element modeling software for multi-aquifer, transient flow. Ground Water 50(1):2–7

    Article  Google Scholar 

  • Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour Res 8(4):1031–1045

    Article  Google Scholar 

  • Oliphant TE (2007) Python for scientific computing. Comput Sci Eng 9(3):10–20

    Article  Google Scholar 

  • Pérez F, Granger BE, Hunter JD (2011) Python: an ecosystem for scientific computing. Comput Sci Eng 13(2):13–21

    Article  Google Scholar 

  • Pythonxy (2013) Pythonxy, ccientific-oriented Python Distribution based on Qt ad Spyder. http://pythonxy.googlecode.com. Accessed 16 January 2013

  • Stehfest H (1970) Algorithm 368, Numerical inversion of Laplace transforms. Commun ACM 13(1):47–49

    Article  Google Scholar 

  • Strack ODL (1984) Three-dimensional streamlines in Dupuit-Forchheimer models. Water Resour Res 20(7):812–822

    Article  Google Scholar 

  • Strack ODL (1989) Groundwater mechanics. Prentice Hall, Englewood Cliffs, NJ

  • Strack ODL (2003) Theory and applications of the analytic element method. Rev Geophys 41(2):1005. doi:10.1029/2002RG000111

    Article  Google Scholar 

  • Verruijt A (1970) Theory of groundwater flow. Gordon and Breach, New York

    Google Scholar 

  • Zhan H (2013) Associated programs with “Zhan, H., and Zlotnik, V.A., Groundwater flow to a horizontal or slanted well in an unconfined aquifer, Water Resources Research, 38(7),1108, doi:10.1029/2001WR000401, 2002”. http://geoweb1.tamu.edu/Faculty/Zhan/Research.html. Accessed 16 January 2013

  • Zhan H, Zlotnik V (2002) Groundwater flow to a horizontal or slanted well in an unconfined aquifer. Water Resour Res 38(7):1108. doi:10.1029/2001WR000401

    Article  Google Scholar 

Download references

Acknowledgements

TTim development was funded by Layne Hydro in Bloomington, Indiana (USA), and by the US EPA Ecosystems Research Division in Athens, Georgia (USA), under contract QT-RT-10-000812 to SS Papadopulos and Associates in Bethesda, Maryland (USA). Brad Shroeder of Layne Hydro provided the field data of the practical application. Brad Shroeder and Erik Anderson of Layne Hydro developed the TTim model of the practical application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Bakker.

Appendix

Appendix

TTim script for the finite difference benchmark

An example TTim input file is presented to illustrate that TTim input files are short and relatively easy to read. This input file is for the second benchmark problem consisting of a well, a canal and a fault in a two-aquifer system (see Fig.  3 and Table  1). Most commands are self-explanatory. Detailed input instructions are given in the TTim manual (Bakker 2012).

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakker, M. Semi-analytic modeling of transient multi-layer flow with TTim. Hydrogeol J 21, 935–943 (2013). https://doi.org/10.1007/s10040-013-0975-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-013-0975-2

Keywords

Navigation