Skip to main content
Log in

Evaluation of correlations between precipitation, groundwater fluctuations, and lake level fluctuations using spectral methods (Wisconsin, USA)

Evaluation des corrélations entre précipitations, fluctuations de nappe et variations d’un niveau de lac par méthodes spectrales (Wisconsin, USA)

Evaluación de correlaciones entre precipitación, fluctuaciones de aguas subterráneas, y fluctuaciones de nivel del lago usando métodos espectrales (Wisconsin, USA)

利用谱方法评价美国威斯康辛州降水与地下水和湖水水位波动之间的相关性

Avaliação de correlações entre a precipitação, as flutuações das águas subterrâneas e flutuações do nível do lago, usando métodos espectrais (Wisconsin, USA)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Spectral methods and 2 years of daily data were used to estimate the phase lag between precipitation and groundwater-level response, and two decades of quarterly data were used to analyze the interaction between precipitation, lake levels and groundwater in the Trout Lake watershed located in Vilas County, Wisconsin, USA. The phase-lag function between precipitation and groundwater response is used to estimate recharge travel time. The recharge travel time and precipitation–groundwater–lake interactions have been traditionally studied using time-domain methods such as physically-based modeling. In this article, the innovative and efficient use of spectral methods is demonstrated to uncover the time scales that are significant in those interactions and estimate the recharge travel time, which is extracted from the underlying daily time series data. The results consistently show that precipitation leads groundwater-level response by up to 5 days in all cases. The effects of precipitation on lake and groundwater levels display strong similarities. Both the precipitation–lake level and the precipitation–groundwater level coherency functions show significant peaks at interannual and seasonal frequencies. The groundwater level–lake level coherency function shows a significant, broad peak at interannual frequencies, and no significant peak at seasonal frequencies, demonstrating the predominance of annual and lower frequencies in groundwater–lake interaction.

Résumé

Des méthodes spectrales et deux années de données journalières ont été utilisées pour estimer le déphasage entre précipitations et réponse du niveau de la nappe et deux décennies de données trimestrielles exploitées pour analyser la relation entre précipitations, niveau du lac, niveau des eaux souterraines dans le bassin versant de Trout Lake, Vilas County, Wisconsin, USA. La fonction déphasage entre précipitations et réponse de nappe est utilisée pour estimer le temps de transfert de la recharge. Le temps de transfert et les interactions précipitation–nappe–lac ont été étudiés par des méthodes classiques dans le domaine temps, comme par exemple la modélisation basée sur la physique. Dans cet article on démontre l’efficacité d’une utilisation innovante des méthodes spectrales pour découvrir les échelles temps significatives de ces interactions et estimer le temps de transfert de la recharge, base des chroniques journalières. Les résultats montrent invariablement que les précipitations provoquent la réponse du niveau de la nappe après 5 jours au plus dans tous les cas. Les effets des précipitations sur les niveaux du lac et de la nappe montrent des similitudes fortes. Les fonctions corrélant précipitations–niveaux du lac et précipitations–niveaux de la nappe montrent les unes et les autres des pics significatifs de fréquences interannuelles et saisonnières. La fonction de corrélation niveau de nappe–niveau du lac montre un pic significatif et prononcé de fréquences interannuelles et saisonnières et pas de pic significatif de fréquences saisonnières, démontrant la prédominance des fréquences annuelles et des basses fréquences pour l’interaction nappe–lac.

Resumen

Se usaron métodos espectrales y dos años de datos diarios para estimar el retardo de las fases entre la precipitación y la respuesta de los niveles de agua subterránea, y dos décadas de datos trimestrales para analizar la interacción entre la precipitación, los niveles del lago y el agua subterránea en la Cuenca del Lago Trout localizado en Vilas County, Wisconsin, EEUU. La función de retardo de fase entre precipitación y la respuesta del agua subterránea se usó para estimar los tiempos de tránsito de la recarga. El tiempo de tránsito de la recarga y las interacciones precipitación–agua subterránea–lago han sido tradicionalmente estudiadas usando métodos de dominio temporal, tales como modelos de bases físicas. En este artículo el uso innovativo y eficiente de métodos espectrales demuestra las escalas temporales que son significativas en aquellas interacciones y estima el tiempo de tránsito de recarga, lo cual es extraído de los datos de las series temporales diarias subyacentes. Los resultados muestran consistentemente que la precipitación conduce respuestas del nivel de agua subterránea hasta por 5 días en todos los casos. El efecto de la precipitación sobre los niveles en el lago y en el agua subterránea exhibe fuertes similitudes. Tanto las funciones de coherencia precipitación–nivel del lago como precipitación–nivel de agua subterránea muestran picos significativos en frecuentas interanuales y estacionales. Las funciones de coherencia nivel de agua subterráneas–nivel del lago muestran un pico significativo en frecuencias interanuales, y ningún pico significativo en frecuencias estacionales, lo que demuestra el predominio de frecuencias bajas anuales en la interacción lago–aguas subterráneas.

摘要

利用谱方法和两年的日监测数据评价了位于美国威斯康辛州维拉斯县的Trout湖流域内降水与地下水位响应之间的相位滞后,并利用二十年的季监测数据分析了该区降水、湖水和地下水之间的交换。降水和地下水响应之间的相位滞后函数可用于估算补给运移时间。曾经用传统的时–域方法,如物理建模,来研究补给运移时间和降水–地下水–湖水之间的相互作用。本文证明了谱方法的新的和有效的应用可以基于日监测数据序列来提取时间尺度,而后者在研究相互作用和估算补给运移时间中具有重要意义。结果一致显示降雨发生5日后均出现了地下水位的响应。降水对湖水水位和地下水水位的影响存在很大的相似性。降水–湖水水位和降水–地下水水位相干函数显示在年际和季节频率上存在峰值。地下水水位–湖水水位相干函数显示在年际间频率存在明显的宽峰,在季节频率上无峰值,表明地下水–湖水相互作的以一年为周期变化的特征更为明显,且频率相对较低。

Resumo

Foram utilizados métodos espectrais e dois anos de dados diários, para estimar o atraso entre a precipitação e a resposta do nível das águas subterrâneas, e foram também usados dados trimestrais de duas décadas para analisar a interação entre a precipitação, os níveis do lago e as águas subterrâneas, na bacia hidrográfica do Lago Trout, localizado no Condado de Vilas, Wisconsin, EUA. O atraso entre a precipitação e a resposta das águas subterrâneas é utilizado como uma função para estimar o tempo que demora a haver recarga. O tempo de recarga e as interações precipitação–água subterrânea–lago têm sido tradicionalmente estudadas usando métodos no domínio do tempo, como a modelação física. Neste artigo, o uso inovador e eficiente de métodos espectrais é demonstrado para descobrir as escalas de tempo que são significativas nessas interações e estimar o tempo de recarga, que é extraído a partir de séries temporais de dados diários. Os resultados mostram consistentemente que a precipitação leva a uma resposta do nível das águas subterrâneas até cinco dias, em todos os casos. Os efeitos da precipitação sobre os níveis do lago e das águas subterrâneas apresentam grandes semelhanças. As funções de coerência entre o nível precipitação–lago e o nível precipitação–água subterrânea mostram picos significativos nas frequências interanuais e sazonais. A função de coerência entre nível da água subterrânea–nível do lago mostra um pico grosseiro significativo nas frequências interanuais e um pico não significativo nas frequências sazonais, demonstrando a predominância de frequências anuais menores na interação água subterrânea–lago.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anderson MP, Cheng X (1993) Long- and short-term transience in a groundwater/lake system in Wisconsin, USA. J Hydrol 145:1–18

    Article  Google Scholar 

  • Bloomfield P (1976) Fourier analysis of time series: an introduction. Wiley, New York

    Google Scholar 

  • Changnon SA, Huff FA, Hsu C-F (1988) Relations between precipitation and shallow groundwater in Illinois. J Clim 1(12):1239–1250

    Google Scholar 

  • Cheng X, Anderson MP (1994) Simulating the influence of lake position on groundwater fluxes. Water Resour Res 30(7):2041–2049

    Article  Google Scholar 

  • Dripps WR (2003) The spatial and temporal variability of groundwater recharge within the Trout Lake Basin of northern Wisconsin. PhD Thesis, University of Wisconsin-Madison, USA, 250 pp

  • Elder JF, Krabbenhoft DP, Walker JF (1992) Water, energy, and biogeochemical budgets (WEBB) program: data availability and research at the northern temperate lakes site, Wisconsin. US Geol Surv Open-File Rep 92–48

  • Jenkins GM, Watts DG (1968) Spectral analysis and its applications. Holden-Day, San Francisco

    Google Scholar 

  • Kelly BP (2001) Relations among river stage, rainfall, groundwater levels and stage at two Missouri River flood plain wetlands, US Geol Surv Water Resour Invest Rep 01–4123

  • Kim K, Anderson M, Bowser CJ (2000) Enhanced dispersion in groundwater caused by temporal changes in recharge rate and lake level. Adv Water Resour 23:625–635

    Article  Google Scholar 

  • Krabbenhoft DP, Anderson MP, Bowser CJ (1990) Estimating groundwater exchange with lakes calibration of a three-dimensional, solute transport model to a stable isotope plume. Water Resour Res 26(10):2455–2456

    Google Scholar 

  • Kuo C, Lindberg C, Thomson DJ (1990) Coherence established between atmospheric carbon dioxide and global temperature. Nature 343:709–713

    Article  Google Scholar 

  • LTER (2011) Long Term Ecological Research website. http://www.lternet.edu. Cited 22 Jan 2011

  • Magnuson JJ, Bowser CJ, Kratz TK (1984) Long-term ecological research (LTER) on north temperate lakes of the United States. Verhandlung Int Vereinig Limnol 22:533–535

    Google Scholar 

  • Namdar Ghanbari R 2007 Climate signals in groundwater and surface water systems: spectral analysis of hydrologic processes. PhD Thesis, University of Wisconsin-Milwaukee, USA

  • Namdar-Ghanbari R, Bravo HR (2008) Coherence between atmospheric teleconnections: Great Lakes water levels, and regional climate. Adv Water Resour. doi:10.1016/j.advwatres.2008.05.002

    Google Scholar 

  • Namdar Ghanbari R, Bravo HR, Magnuson JJ, Hyzer WG, Benson BJ (2009) Coherence between lake ice cover, local climate and teleconnections (Lake Mendota, Wisconsin). J Hydrol 374(3–4):282–293. doi:10.1016/j.jhydrol.2009.06.024

    Google Scholar 

  • Tsonis AA, Elsner JB, Hunt AG, Jagger TH (2005) Unfolding the relation between global temperature and ENSO. Geophys Res Lett. doi:10.1029/2005GL022875

    Google Scholar 

  • USGS (2011) Trout Lake WEBB Project published papers at: http://infotrek.er.usgs.gov/doc/webb/pubs.html. Cited 22 Jan 2011

  • Von Storch H, Zwiers FW (1999) Statistical analysis in climate research. Cambridge University Press, Cambridge, 484 pp

    Google Scholar 

  • Walker JF, Bullen TD (2000) Trout Lake, Wisconsin: a water, energy, and biogeochemical budgets program site. US geological survey fact sheet. US Geological Survey, Reston, VA, pp 161–169

    Google Scholar 

  • WEBB (2011) Water, Energy, and Biogeochemical Budgets (WEBB) Program website. http://water.usgs.gov/webb. Cited 22 Jan 2011

Download references

Acknowledgments

This study was partially funded through a grant from State of Wisconsin Groundwater Coordinating Council and the USGS Ground-Water Resources Program. Quarterly data on precipitation, groundwater level and lake level were obtained from the NTL-LTER and the WEBB research programs. Daily data on groundwater level data was collected by Dripps (2003). The comments made on an earlier version of this manuscript by Randy Hunt and Daniel Feinstein, USGS, are gratefully acknowledged. Thanks are also due to Ken Bradbury and two anonymous reviewers for their constructive suggestions for improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Namdar Ghanbari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Namdar Ghanbari, R., Bravo, H.R. Evaluation of correlations between precipitation, groundwater fluctuations, and lake level fluctuations using spectral methods (Wisconsin, USA). Hydrogeol J 19, 801–810 (2011). https://doi.org/10.1007/s10040-011-0718-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0718-1

Keywords

Navigation