Skip to main content

Advertisement

Log in

Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources

Article de synthèse: L’impact potentiel, sur les nappes superficielles, du stockage géologique souterrain de gaz carbonique dans des aquifères salins profonds

Revisión: El impacto potencial del almacenamiento geológico subterráneo de dióxido de carbono en acuíferos salinos profundos en los recursos de agua subterránea someros

综述:深部咸水层中二氧化碳地质封存对浅层地下水资源的潜在影响

Revisão: Impacte potencial do armazenamento geológico subterrâneo de dióxido de carbono em aquíferos salinos profundos nos recursos hídricos subterrâneos subsuperficiais

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Underground geological storage of CO2 in deep saline aquifers is considered for reducing greenhouse gases emissions into the atmosphere. However, some issues were raised with regard to the potential hazards to shallow groundwater resources from CO2 leakage, brine displacement and pressure build-up. An overview is provided of the current scientific knowledge pertaining to the potential impact on shallow groundwater resources of geological storage of CO2 in deep saline aquifers, identifying knowledge gaps for which original research opportunities are proposed. Two main impacts are defined and discussed therein: the near-field impact due to the upward vertical migration of free-phase CO2 to surficial aquifers, and the far-field impact caused by large-scale displacement of formation waters by the injected CO2. For the near-field, it is found that numerical studies predict possible mobilization of trace elements but concentrations are rarely above the maximum limit for potable water. For the far-field, numerical studies predict only minor impacts except for some specific geological conditions such as high caprock permeability. Despite important knowledge gaps, the possible environmental impacts of geological storage of CO2 in deep saline aquifers on shallow groundwater resources appears to be low, but much more work is required to evaluate site specific impacts.

Résumé

Le stockage géologique souterrain de gaz carbonique dans des aquifères salins profonds est envisagé pour la réduction des émissions de gaz à effet de serre dans l’atmosphère. Cependant, certains risques potentiels vis à vis des nappes superficielles ont été invoqués du fait des fuites de CO2: migration de saumure, augmentations de pression. Une vue d’ensemble d’état de l’art concernant l’impact potentiel sur les ressources superficielles en eau souterraine du stockage géologique du CO2 dans des aquifères salins profonds est présentée, identifiant des lacunes de connaissances pour lesquelles des opportunités de recherche originale sont proposées. Deux impacts principaux sont définis et discutés ci-dessous : l’impact en champ proche dû à la migration verticale ascendante de la phase CO2 libre vers les aquifères superficiels, et l’impact en champ lointain causé par le déplacement à grande échelle des eaux de l’aquifère induit par le CO2 injecté. Pour le champ proche, les simulations numériques prévoient la mobilisation possible d’éléments trace ; néanmoins, les concentrations sont rarement au dessus du seuil de potabilité. Pour le champ lointain, les simulations numériques prévoient seulement des impacts mineurs, à l’exception de certains contextes géologiques spécifiques tels ceux comportant des roches de couvertures de forte perméabilité. En dépit d’importantes lacunes de connaissances, les impacts environnementaux potentiels du stockage géologique souterrain de CO2 dans des aquifères salins profonds, sur les nappes superficielles, apparaissent faibles. Mais beaucoup plus de travail est nécessaire pour évaluer les impacts spécifiques sur site.

Resumen

El almacenamiento geológico subterráneo de CO2 en acuíferos salinos profundos es tenido en cuenta para la reducción de la emisión de gases invernaderos en la atmósfera. Sin embargo se plantearon algunas cuestiones en relación a los riesgos potenciales para los recursos de agua subterránea someros a partir de la filtración de CO2 , desplazamiento de las salmueras y acumulación de presión. Se expone una visión general del conocimiento científico actual concerniente al impacto potencial del almacenamiento geológico de CO2 en acuíferos salinos profundos sobre los recursos de agua subterránea someros, identificando los baches de conocimiento para lo cual se proponen oportunidades originales de investigación. Se definen y discuten dos de los principales impactos: el impacto de campo local debido a la migración vertical ascendente de la fase libre de CO2 a los acuíferos superficiales, y el impacto de campo a gran distancia causado por desplazamiento a gran escala de aguas de formación con el CO2 inyectado. Se encontró para el campo local que los estudios numéricos predicen la posible movilización de elementos trazadores pero las concentraciones están raramente por encima del límite máximo para agua potable. Para el campo a gran distancia, los estudios numéricos predicen solamente impactos menores, excepto para algunas condiciones geológicas específicas tales como alta permeabilidad de la roca de cubierta. A pesar de los importantes baches en el conocimiento, los posibles impactos ambientales sobre los recursos de agua subterránea somera debido al almacenamiento geológico de CO2 en acuíferos salinos profundos parecen ser bajos, pero se requiere mucho más trabajo para evaluar los impactos en sitios específicos.

摘要

摘要: 深部咸水层中二氧化碳的地质封存被认为可以减少大气圈中温室气体的排放。但考虑到二氧化碳封存造成的泄漏、卤水位移和压力积聚,它可能对浅层地下水资源造成潜在的危害。本文总结了现有的相关知识,对深部咸水层中二氧化碳地质封存对浅层地下水资源的潜在影响进行了综述,并理出了为原创性研究提供机会的知识缺口。本文定义并讨论了两个主要影响:自由态的二氧化碳向浅部含水层的垂直迁移造成的近场地影响;二氧化碳的注入导致地层水大尺度位移造成的远场地影响。在近场地影响中,数值研究能预测痕量元素的运移,但含量很少超过饮用水中规定的最高允许值。数值研究结果显示远场地影响极小,但盖层渗透性较高的场地除外。尽管存在重要的知识缺口,深部咸水层中二氧化碳的地下地质封存对浅层地下水资源的可能环境影响小,但评估特定场地的具体影响时需要做更多工作。

Resumo

O armazenamento subterrâneo de CO2 em aquíferos salinos profundos está a ser considerado, com vista à redução das emissões de gases de estufa para a atmosfera. No entanto, têm-se levantado algumas questões relacionadas com os riscos potenciais para as águas subterrâneas menos profundas, resultantes da drenância do CO2, da deslocação das salmouras e da subida da pressão. É feita uma revisão dos conhecimentos científicos atuais sobre o impacte potencial do armazenamento geológico subterrâneo de CO2 nos recursos hídricos subterrâneos menos profundos, identificando lapsos de conhecimento para os quais são sugeridas oportunidades de pesquisa futura. Dois impactes principais são definidos e discutidos neste documento: o impacte, próximo da zona de introdução do CO2, da migração vertical da fase livre de CO2 para os aquíferos superiores, e o impacte, nos campos mais afastados, causado pela deslocação em larga escala de águas da formação, influenciada pela injeção de CO2. Para o campo próximo, verificou-se que os estudos numéricos predizem uma possível mobilização de elementos traço, mas as concentrações raramente estrão acima do limite máximo para águas potáveis. Para o campo mais afastado, os estudos numéricos predizem apenas impactes menores, excepto para algumas condições geológicas específicas, tal como uma permeabilidade elevada das rochas de cobertura. Apesar de lapsos importantes de conhecimento, os impactes ambientais do armazenamento geológico de CO2 em aquíferos salinos profundos nos recursos hídricos subterrâneos menos profundos parece ser pequeno, mas é necessária muito mais investigação para avaliar os reais impactes em cada local específico.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Acronym for DEvelopment of COupled (THM) models and their VALidation against EXperiments in nuclear waste isolation.

References

  • Allison JD, Brown DS, Novo-Gradac KJ (1991) MINTEQA2/PRODEFA2, a geochemical assessment model for environmental systems, version 3.0 user’s manual. US Environmental Protection Agency report EPA/600/3-91/021, US EPA, Washington, DC

  • Apps JA, Zhang Y, Zheng L, Xu T, Birkholzer JT (2009) Identification of thermodynamic controls defining the concentrations of hazardous elements in potable ground waters and the potential impact of increasing carbon dioxide partial pressure. Energy Procedia 1:1917–1924

    Article  Google Scholar 

  • Apps JA, Zheng L, Zhang Y, Xu T, Birkholzer JT (2010) Evaluation of potential changes in groundwater quality in response to CO2 leakage from deep geologic storage. Transp Porous Media 82(1):215–246. doi:10.1007/s11242-009-9509-8

    Article  Google Scholar 

  • Audigane P, Gaus I, Czernichowski-Lauriol I, Pruess K, Xu T (2007) Two-dimensional reactive transport modeling of CO2 injection in a saline aquifer at the Sleipner site, North Sea. Am J Sci 307(7):974–1008. doi:10.2475/07.2007.02

    Article  Google Scholar 

  • Audigane P, Chiaberge C, Lions J, Humez P (2009) Modeling of CO2 leakage through an abandoned well from a deep saline aquifer to fresh groundwater, Proceedings of TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, 8 pp

  • Bachu S (2003) Screening and ranking of sedimentary basins for sequestration of CO2 in geological media in response to climate change. Environ Geol 44:277–289. doi:10.1007/s00254-003-0762-9

    Article  Google Scholar 

  • Bachu S (2008) CO2 storage in geological media: role, means, status and barriers to deployment. Prog Energy Combust Sci 34:254–273. doi:10.1016/j.pecs.2007.10.001

    Article  Google Scholar 

  • Bachu S, Adams JJ (2003) Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifer to sequester CO2 in solution. Energy Convers Manage 44:3151–3175

    Article  Google Scholar 

  • Bachu S, Celia MA (2009) Assessing the potential for CO2 leakage, particularly through wells, from geological storage sites. In: McPherson BJ, Sundquist ET (eds) Carbon sequestration and its role in the global carbon cycle. AGU Monograph, pp 203–216, AGU, Washington, DC

  • Bachu S, Gunter WD, Perkins EH (1994) Aquifer disposal of CO2: hydrodynamic and mineral trapping. Energy Convers Manage 34(4):269–279. doi:10.1016/0196-8904(94)90060-4

    Article  Google Scholar 

  • Bense VF, Person MA (2008) Transient hydrodynamics within intercratonic sedimentary basins during glacial cycles. J Geophys Res 113:F04005. doi:10.1029/2007JF000969

    Article  Google Scholar 

  • Berger A, Loutre M-F (2004) A quand la prochaine glaciation? [When will be the next glaciation?]. Dossiers Rech 17:18–22

    Google Scholar 

  • Bergman PD, Winter EM (1995) Disposal of carbon dioxide in aquifers in the US. Energy Convers Manage 36(6–9):523–526. doi:10.1016/0196-8904(95)00058-L

    Article  Google Scholar 

  • Bethke CM (2008) Geochemical and biogeochemical reaction modeling, 2nd edn. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Birkholzer JT, Zhou Q (2009) Basin-scale hydrogeologic impacts of CO2 storage: capacity and regulatory implications. Int J Greenhouse Gas Control 3:745–756. doi:10.1016/j.ijggc.2009.07.002

    Article  Google Scholar 

  • Birkholzer JT, Apps J, Zheng L, Zhang Y, Xu T, Tsang C-F (2008a) Research project on CO2 geological storage and groundwater resources, quality effects caused by CO2 Intrusion into Shallow Groundwater, Technical Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 352 pp

  • Birkholzer JT, Zhou Q, Zhang K, Jordan P, Rutqvist J, Tsang C-F (2008b) Research project on CO2 geological storage and groundwater resources: large-scale hydrogeological evaluation and impact on groundwater systems, Annual Report October 1, 2007 to September 30, 2008, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Birkholzer JT, Zhou Q, Tsang C-F (2009) Large-scale impact of CO2 storage in deep saline aquifers: a sensitivity study on pressure response in stratified systems. Int J Greenhouse Gas Control 3:181–194. doi:10.1016/j.ijggc.2008.08.002

    Article  Google Scholar 

  • Birkholzer JT, Zheng L, Spycher N, Varadharajan C, Nico PS (2010) Groundwater quality changes in response to CO2 leakage from deep geological storage. Geol Soc Am Abstr 42(5):45

    Google Scholar 

  • Bredehoeft JD (2003) From models to performance assessment: the conceptualization problem. Ground Water 41(5):571–577

    Article  Google Scholar 

  • Carey JW, Wigand M, Chipera SJ, WoldeGabriel G, Pawar R, Lichtner PC, Wehner SC, Raines MA, Guthrie GD Jr (2007) Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. Int J Greenhouse Gas Control 1(1):75–85. doi:10.1016/S1750-5836(06)00004-1

    Article  Google Scholar 

  • Carroll S, Haoa Y, Aines R (2009) Transport and detection of carbon dioxide in dilute aquifers. Energy Procedia 1:2111–2118. doi:10.1016/j.egypro.2009.01.275

    Article  Google Scholar 

  • Celia MA, Nordbotten JM (2009) Practical modeling approaches for geological storage of carbon dioxide. Ground Water 47(5):627–638. doi:10.1111/j.1745-6584.2009.00590.x

    Article  Google Scholar 

  • Cherry JA (1983) Migration of contaminants in groundwater at a landfill: a case study. J Hydrol 63:1–2, vii–ix

    Article  Google Scholar 

  • Class H, Ebigbo A, Helmig R, Dahle HK, Nordbotten JM, Celia MA, Audigane P, Darcis M, Ennis-King J, Fan Y, Flemisch B, Gasda SE, Jin M, Krug S, Labregere D, Naderi Beni A, Pawar RJ, Sbai A, Thomas SG, Trenty L, Wei L (2009) A benchmark study on problems related to CO2 storage in geologic formations. Comput Geosci 13:409–434. doi:10.1007/s10596-009-9146-x

    Article  Google Scholar 

  • Dong Y, Li G, Li M, Wu R (2009) Impact of large-scale CO2 geologic storage in deep saline aquifers: an example from the Songliao Basin, China, Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 6 pp

  • Doughty C, Pruess K, Benson SM, Hovorka SD, Knox PR, Green CT (2001) Capacity investigation of brine-bearing sands of the Frio Formation for geologic sequestration of CO2. Proceedings of First National Conference on Carbon Sequestration, 14–17 May 2001, Washington, DC, USDOE/NETL-2001/1144 Paper, National Energy Technology Laboratory, US DOE, Washington, DC, pp 32–48, available on CD-ROM

  • Ennis-King JP, Paterson L (2003) Role of convective mixing in the long-term storage of carbon dioxide in deep saline formations. SPE paper no. 84344, Presented at Society of Petroleum Engineers Annual Technical Conference and Exhibition, Denver, CO, 5–8 October 2003, SPE, Richardson, TX

  • Gasda SE, Bachu S, Celia MA (2004) Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environ Geol 46:707–720. doi:10.1007/s00254-004-1073-5

    Article  Google Scholar 

  • Gaus I (2010) Role and impact of CO2-rock interactions during CO2 storage in sedimentary rocks. Int J Greenhouse Gas Control 4:73–89

    Article  Google Scholar 

  • Gaus I, Audigane P, André L, Lions J, Jacquemet N, Durst P, Czernichowski-Lauriol I, Azaroual M (2008) Geochemical and solute transport modelling for CO2 storage, what to expect from it? Int J Greenhouse Gas Control 2(4):605–625

    Article  Google Scholar 

  • Grasby S, Osadetz K, Betcher R, Render F (2000) Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology 28(7):635–638

    Article  Google Scholar 

  • Gustafson G, Gylling B, Selroos J-O (2009) The Äspö Task Force on groundwater flow and transport of solutes: bridging the gap between site characterization and performance assessment for radioactive waste disposal in fractured rocks. Hydrogeol J 17:1031–1033. doi:10.1007/s10040-008-0419-6

    Article  Google Scholar 

  • Hitchon B, Gunter WD, Gentzis T, Bailey RT (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Convers Manage 40:835–843. doi:10.1016/S0196-8904(98)00146-0

    Article  Google Scholar 

  • Holloway SH (1997) An overview of the underground disposal of carbon dioxide. Energy Convers Manage 38(1):193–198

    Article  Google Scholar 

  • Holloway SH, Savage D (1993) The potential for aquifer disposal of carbon dioxide in the UK. Energy Convers Manage 34(9–11):925–932. doi:10.1016/0196-8904(93)90038-C

    Article  Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, 442 pp

    Google Scholar 

  • Jaffé PR, Wang S (2003) Potential effect of CO2 releases from deep reservoirs on the quality of fresh-water aquifers. In: Gale J, Kaya Y (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Pergamon, New York, pp 1657–1660

  • Jost A, Violette S, Gonçalvès J, Ledoux E, Guyomard Y, Guillocheau F, Kageyama M, Ramstein G, Suc J-P (2007) Long-term hydrodynamic response induced by past climatic and geomorphologic forcing: the case of the Paris basin, France. Phys Chem Earth 32:368–378. doi:10.1016/j.pce.2006.02.053

    Google Scholar 

  • Keating EH, Fessenden J, Kanjorski N, Koning DJ, Pawar R (2010) The impact of CO2 on shallow groundwater chemistry: observations at a natural analog site and implications for carbon sequestration. Environ Earth Sci 60(3):521–536. doi:10.1007/s12665-009-0192-4

    Article  Google Scholar 

  • Kharaka YK, Cole DR, Hovorka SD, Gunter WD, Knauss KG, Freifeld BM (2006) Gas-water-rock interactions in Frio Formation following CO2 injection: implications for the storage of gases in sedimentary basins. Geology 34(7):577–580. doi:10.1130/G22357.1

    Article  Google Scholar 

  • Kharaka YK, Thordsen JJ, Hovorka SD, Nance HS, Cole DR, Phelps TJ, Knauss KG (2009) Potential environmental issues of CO2 storage in deep saline aquifers: geochemical results from the Frio-I Brine Pilot test, Texas, USA. Appl Geochem 24:1106–1112. doi:10.1016/j.apgeochem.2009.02.010

    Article  Google Scholar 

  • Kharaka YK, Thordsen JJ, Kakouros E, Ambats G, Herkelrath WN, Beers SR, Birkholzer JT, Apps JA, Spycher NF, Zheng L, Trautz RC, Rauch HW, Gullickson KS (2010) Changes in the chemistry of shallow groundwater related to the 2008 injection of CO2 at the ZERT field site, Bozeman, Montana. Environ Earth Sci 60:273–284. doi:10.1007/s12665-009-0401-1

    Article  Google Scholar 

  • Kolak JJ, Burruss RC (2006) Geochemical investigation of the potential for mobilizing non-methane hydrocarbons during carbon dioxide storage in deep coal beds. Energy Fuels 20:566–574

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River, NJ

    Google Scholar 

  • LeBlanc DR, Garabedian SP, Hess KM, Gelhar LW, Quadri RD, Stollenwerk KG, Wood WW (1991) Large-scale natural gradient tracer test in sand and gravel, Cape Cod, Massachusetts: 1. experimental design and observed tracer movement. Water Resour Res 27(5):895–910

    Article  Google Scholar 

  • Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008a) Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. J Geophys Res 113:F01011. doi:10.1029/2007JF000838

    Article  Google Scholar 

  • Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008b) Simulating the impact of glaciations on continental groundwater flow systems: 1. relevant processes and model formulation. J Geophys Res 113:F03017. doi:10.1029/2007JF000928

    Article  Google Scholar 

  • Lemieux J-M, Sudicky EA, Peltier WR, Tarasov L (2008c) Simulating the impact of glaciations on continental groundwater flow systems: 2 model application to the Wisconsinian glaciation over the Canadian landscape. J Geophys Res 113:F03018. doi:10.1029/2007JF000929

    Article  Google Scholar 

  • Lewicki JL, Birkholzer J, Tsang C-F (2007) Natural and industrial analogues for leakage of CO2 from storage reservoirs: identification of features, events, and processes and lessons learned. Environ Geol 52:457–467. doi:10.1007/s00254-006-0479-7

    Article  Google Scholar 

  • McGrath AE, Upson GL, Caldwell MD (2007) Evaluation and mitigation of landfill gas impacts on cadmium leaching from native soils. Ground Water Monit Rem 27(4):99–109

    Article  Google Scholar 

  • McPherson BJOL, Cole BS (2000) Multiphase CO2 flow, transport and sequestration in the Powder River Basin, Wyoming, USA. J Geochem Explor 69–70(65–69). doi:10.1016/S0375-6742(00)00046-7

  • Michael K, Gola A, Shulakov V, Ennis-King J, Allinson G, Sharma S, Aiken T (2010) Geological storage of CO2 in saline aquifers: a review of the experience from existing storage operations. Int J Greenhouse Gas Control 4:659–667. doi:10.1016/j.ijggc.2009.12.011

    Article  Google Scholar 

  • Nicot J-P (2008) Evaluation of large-scale CO2 storage on fresh-water sections of aquifers: an example from the Texas Gulf Coast Basin. Int J Greenhouse Gas Control 2:582–593. doi:10.1016/j.ijggc.2008.03.004

    Article  Google Scholar 

  • Nicot J-P, Hovorka SD, Choi J-W (2009) Investigation of water displacement following large CO2 sequestration operations. Energy Procedia 1:4411–4418. doi:10.1016/j.egypro.2009.02.256

    Article  Google Scholar 

  • Nitao JJ (1998) Reference manual for the NUFT flow and transport code, version 2.0. UCRL-MA-130651, Lawrence Livermore National Laboratory, Livermore, CA

  • Nordbotten JM, Celia MA, Bachu S (2004) Analytical solutions for leakage rates through abandoned wells. Water Resour Res 40:W04204. doi:10.1029/2003WR002997

    Article  Google Scholar 

  • Park Y-J, Sudicky EA, Sykes JF (2009) Effects of shield brine on the safe disposal of waste in deep geologic environments. Adv Water Resour 32:1352–1358. doi:10.1016/j.advwatres.2009.06.003

    Article  Google Scholar 

  • Person M, McIntosh J, Bense V, Remenda VH (2007) Pleistocene hydrology of North America: the role of ice sheets in reorganizing groundwater flow systems. Rev Geophys 45:RG3007. doi:10.1029/2006RG000206

    Article  Google Scholar 

  • Person M, Banerjee A, Rupp J, Medina C, Lichtner P, Gable C, Pawar R, Celia M, McIntosh J, Bense V (2010) Assessment of basin-scale hydrologic impacts of CO2 sequestration, Illinois basin. Int J Greenhouse Gas Control 4:840–854. doi:10.1016/j.ijggc.2010.04.004

    Article  Google Scholar 

  • Pruess K (2005) ECO2N: a TOUGH2 fluid property module for mixtures of water, NaCl, and CO2. Technical report LBNL-57952, Lawrence Berkeley National Laboratory, Berkeley, CA, 76 pp

  • Pruess K (2008) On CO2 fluid flow and heat transfer behavior in the subsurface, following leakage from a geologic storage reservoir. Environ Geol 54:1677–1686. doi:10.1007/s00254-007-0945-x

    Article  Google Scholar 

  • Pruess K, Oldenburg CM, Moridis G (1999) TOUGH2 user’s guide, version 2.0. Report LBNL-43134, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Pruess K, García J, Kovscek T, Oldenburg C, Rutqvist J, Steefel C, Xu T (2004) Code intercomparison builds confidence in numerical simulation models for geologic disposal of CO2. Energy 29:1431–1444. doi:10.1016/j.energy.2004.03.077

    Article  Google Scholar 

  • Rivera A (2005) How well do we understand groundwater in Canada? A science case study. Geological Society of Canada, Ottawa, ON

  • Rivett MO, Feenstra S, Cherry JA (1992) Groundwater zone transport of chlorinated solvents: a field experiment. Paper presented at Modern Trends in Hydrogeology, Conference of the Canadian Chapter, International Association of Hydrogeologists, Hamilton, ON

  • Rutqvist J, Tsang C-F (2002) A study of caprock hydromechanical changes associated with CO2 injection into a brine formation. Environ Geol 42:296–305. doi:10.1007/s00254-001-0499-2

    Article  Google Scholar 

  • Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Convers Manage 48:1798–1807. doi:10.1016/j.enconman.2007.01.021

    Article  Google Scholar 

  • Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52(1–4):245–275

    Article  Google Scholar 

  • Smyth RC, Hovorka SD, Lu J, Romanak KD, Partin JW, Wong C, Yang C (2009) Assessing risk to fresh water resources from long term CO2 injection: laboratory and field studies. Energy Procedia 1:1957–1964. doi:10.1016/j.egypro.2009.01.255

    Article  Google Scholar 

  • Spangler LH, Dobeck LM, Repasky KS, Nehrir AR, Humphries SD, Barr JL, Keith CJ, Shaw JA, Rouse JH, Cunningham AB, Benson SM, Oldenburg CM, Lewicki JL, Wells AW, Diehl JR, Strazisar BR, Fessenden JE, Rahn TA, Amonette JE, Barr JL, Pickles WL, Jacobson JD, Silver EA, Male EJ, Rauch HW, Gullickson KS, Trautz R, Kharaka Y, Birkholzer J, Wielopolski L (2009) A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models. Environ Earth Sci 60:227–239. doi:10.1007/s12665-009-0400-2

    Article  Google Scholar 

  • Sudicky EA (1986) A natural-gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resour Res 22(13):2069–2082

    Article  Google Scholar 

  • Tsang C-F, Stephansson O, Jing L, Kautsky F (2009) DECOVALEX Project: from 1992 to 2007. Environ Geol 57:1221–1237. doi:10.1007/s00254-008-1625-1

    Article  Google Scholar 

  • van der Meer LGH (1992) Investigations regarding the storage of carbon dioxide in aquifers in the Netherlands. Energy Convers Manage 33(5–8):611–618

    Google Scholar 

  • Wang S, Jaffe PR (2004) Dissolution of a mineral phase in potable aquifers due to CO2 releases from deep formations: effect of dissolution kinetics. Energy Convers Manage 45:2833–2848. doi:10.1016/j.enconman.2004.01.002

    Article  Google Scholar 

  • Xu T, Sonnenthal EL, Spycher N, Pruess K (2004) TOUGHREACT user’s guide: a simulation program for non-isothermal multiphase reactive geochemical transport in variable saturated geologic media. Report LBNL-55460. Lawrence Berkeley National Laboratory, Berkeley, CA

    Book  Google Scholar 

  • Yamamoto H, Zhang K, Karasaki K, Marui A, Uehara H, Nishikawa N (2009) Numerical investigation concerning the impact of CO2 geologic storage on regional groundwater flow. Int J Greenhouse Gas Control 3:586–599. doi:10.1016/j.ijggc.2009.04.007

    Article  Google Scholar 

  • Zhang K, WU YS, Pruess K (2008) User’s guide for TOUGH2-MP: a massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley National Laboratory, Berkeley, CA

  • Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009a) On mobilization of lead and arsenic in groundwater in response to CO2 leakage from deep geological storage. Chem Geol 268:281–297. doi:10.1016/j.chemgeo.2009.09.007

    Article  Google Scholar 

  • Zheng L, Apps JA, Zhang Y, Xu T, Birkholzer JT (2009b) Reactive transport simulations to study groundwater quality changes in response to CO2 leakage from deep geological storage. Energy Procedia 1:1887–1894. doi:10.1016/j.egypro.2009.01.246

    Article  Google Scholar 

  • Zheng L, Apps AA, Spycher N, Birkholzer JT, Kharaka Y, Thordsen J, Kakouros E, Trautz R (2009c) Geochemical modeling of changes in shallow groundwater chemistry observed during the MSU-ZERT CO2 injection experiment. Proceeding of the TOUGH Symposium 2009, Lawrence Berkeley National Laboratory, Berkeley, CA, 10 pp

  • Zhou Q, Birkholzer JT, Mehnert E, Lin Y-F, Zhang K (2010) Modeling basin- and plume-scale processes of CO2 storage for full scale deployment. Ground Water 48(4):494–514. doi:10.1111/j.1745-6584.2009.00657.x

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Geological Survey of Canada. Comments provided by my colleague John W. Molson are greatly appreciated. Thanks to Jens Birkholzer for permission to reproduce Fig. 11. Comments from the Associate Editor and two anonymous reviewers significantly helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Michel Lemieux.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lemieux, JM. Review: The potential impact of underground geological storage of carbon dioxide in deep saline aquifers on shallow groundwater resources. Hydrogeol J 19, 757–778 (2011). https://doi.org/10.1007/s10040-011-0715-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0715-4

Keywords

Navigation