Skip to main content
Log in

Multiple-pumped-well aquifer test to determine the anisotropic properties of a karst limestone aquifer in Pasco County, Florida, USA

Essai de pompage d’un plusieurs puits pour la détermination des propriétés anisotropiques d’un aquifère karstique calcaire de Pasco County, Floride, USA

Ensayos de acuífero en pozos de bombeo múltiples para determinar las propiedades anisotrópicas de un acuífero calcáreo kástico en Pasco County, Florida, EEUU

通过群井抽水试验确定美国佛罗里达州帕斯科郡灰岩岩溶含水层的各项异性

Ensaio de caudal múltiplo em furos para determinar as propriedades anisotrópicas de um aquífero cársico no Condado de Pasco, Flórida, EUA

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater-level data from an aquifer test utilizing four pumped wells conducted in the South Pasco wellfield in Pasco County, Florida, USA, were analyzed to determine the anisotropic transmissivity tensor, storativity, and leakance in the vicinity of the wellfield. A weighted least-squares procedure was used to analyze drawdowns measured at eight observation wells, and it was determined that the major axis of transmissivity extends approximately from north to south and the minor axis extends approximately from west to east with an angle of anisotropy equal to N4.54°W. The transmissivity along the major axis \({\left( {T_{{\xi \xi }} } \right)}\) is 14,019 m2 day–1, and the transmissivity along the minor axis \({\left( {T_{{\eta \eta }} } \right)}\) is 4,303 m2 day–1. The equivalent transmissivity \(T_{e} = {\left( {T_{{\xi \xi }} T_{{\eta \eta }} } \right)}^{{1 \mathord{\left/ {\vphantom {1 2}} \right. \kern-\nulldelimiterspace} 2}} = 7,767{{\text{m}}^{2} } \mathord{\left/ {\vphantom {{{\text{m}}^{2} } {{\text{day}}^{{ - {\text{1}}}} }}} \right. \kern-\nulldelimiterspace} {{\text{day}}^{{ - {\text{1}}}} }\), and the ratio of anisotropy is 3.26. The storativity of the aquifer is 7.52 × 10−4, and the leakance of the overlying confining unit is 1.37 × 10−4 day−1. The anisotropic properties determined for the South Pasco wellfield in this investigation confirm the results of previous aquifer tests conducted in the wellfield and help to quantify the NW–SE to NE–SW trends for regional fracture patterns and inferred solution-enhanced flow zones in west-central Florida.

Résumé

Les données de niveaux d’eau lors d’un pompage d’essai utilisant quatre puits conduit dans le champ de South Pasco à Pasco County, Floride, Etats-Unis, ont été analysées afin de déterminer le tenseur de transmissivité anisotropique, le coefficient d’emmagasinement et le coefficient de drainance à proximité du champs captant. La méthode des moindres carrés pondérés a été utilisée pour analyser les courbes de huit forages d’observation. Il a été déterminé que l’axe principal de transmissivité s’étend approximativement du nord au sud et que l’axe secondaire est orienté environ ouest-est avec un angle d’anisotropie égal à N4.54°W. La transmissivité le long de l’axe principal \(\left( {T_{\xi \xi } } \right)\) est de 14,019 m2/jour et la transmissivité le long de l’axe secondaire \(\left( {T_{\eta \eta } } \right)\) est de 4,303 m2/jour. La transmissivité équivalente T e  = 7,767 m2/jour, et le rapport d’anisotropie est 3.26. Le coefficient d’emmagasinement de l’aquifère est 7.52 × 10−4, et le coefficient de drainance des couches sus-jacentes est de 1.37 × 10−4 jour−1. Les propriétés anisotropiques déterminées dans cette étude pour le champ captant de South Pasco confirment les résultats des pompages d’essai antérieurs et aident à quantifier les tendances nord-ouest-sud-est à nord-est-sud-ouest du schéma régional des fractures et déduire les zones de flux favorables au centre-ouest de la Floride.

Resumen

Se analizaron los datos de niveles de aguas subterráneas de un ensayo de acuífero en cuatro pozos de bombeo del campo de bombeo South Pasco en Pasco County, Florida, EEUU para determinar el tensor anisotrópico transmisividad, almacenamiento y filtración vertical en las vecindades del campo de bombeo. Se usó un procedimiento de mínimos cuadrados ponderados para analizar las depresiones medidas en ocho pozos de observación, se determinó que el eje mayor de la transmisividad se extiende aproximadamente de norte a sur y el eje menor se extiende aproximadamente de oeste a este con un ángulo de anisotropía igual a N4.54°W. La transmisividad a lo largo del eje mayor \(\left( {T_{\xi \xi } } \right)\) es 14,019 m2 día–1, y la transmisividad a lo largo del eje menor \(\left( {T_{\eta \eta } } \right)\) es 4,303 m2 día–1. La transmisividad equivalente T e  = 7,767 m2 día–1, y la relación de anisotropía es 3.26. El almacenamiento del acuífero es 7.52 × 10−4, y la filtración vertical de la unidad confinante suprayacente es 1.37 × 10−4 día−1. Las propiedades anisotrópicas determinadas para el campo de bombeo de South Pasco en esta investigación confirma los resultados de ensayos de acuíferos previos realizados en el campo de bombeo y ayuda a cuantificar las tendencias noroeste-sudeste a noreste-sudoeste para el patrón de fracturas regional y a soluciones mejoradas de las zonas de flujo deducidas en el centro oeste de Florida.

摘要

分析了在美国佛罗里达州帕斯科郡的南帕斯科井区中四口抽水井进行的抽水试验所得到的地下水位数据, 以确定井区附近具各项异性的导水系数张量、贮水系数和相对透水系数。用加权最小二乘方法分析了8口观测井的降深, 确定出导水系数的主轴方向近似为自北向南而副轴近似为自西到东, 各项异性角度为N 4.54° W。主轴方向的导水系数\(\left( {T_{\xi \xi } } \right)\)为14019 m2/d, 副轴方向\(\left( {T_{\eta \eta } } \right)\)为 4303 m2/ day。等效导水系数为\(T_e = \sqrt {T_{\xi \xi } T_{\eta \eta } } = 7,767{{{\text{m}}^2 } \mathord{\left/ {\vphantom {{{\text{m}}^2 } {{\text{day}}}}} \right. \kern-\nulldelimiterspace} {{\text{day}}}}\), 各项异性率为3.26。含水层的贮水系数为7.52 × 10−4, 上覆顶板的相对透水系数为1.37 × 10-4 /day。本次调查中所确定的南帕斯科井区的各项异性, 进一步肯定了之前在该井区进行的抽水试验的结果, 并对北西-南东至北东-南西方向的区域裂隙模式和推断的佛罗里达中西部为溶解增强的流动区域的量化有很大帮助。

Resumo

Dados de níveis de água subterrânea resultantes de um ensaio de caudal num aquífero usando quatro furos em bombagem e levados a efeito no campo de captações do Sul de Pasco, no Condado de Pasco, Flórida, EUA, foram analisados, a fim de determinar o tensor de transmissividade anisotrópica, o coeficiente de armazenamento e a drenância na vizinhança do campo de captações. Um método de mínimos quadrados ponderados foi usado para analisar rebaixamentos medidos em oito furos de observação, e foi determinado que o eixo maior da transmissividade se estende numa direcção aproximada Norte-Sul e que o eixo menor se estende aproximadamente na direcção Oeste-Este, com um ângulo de anisotropia igual a N4.54°W. A transmissividade ao longo do eixo maior \(\left( {T_{\xi \xi } } \right)\) é de 14,019 m2 dia−1, e a transmissividade ao longo do eixo menor \(\left( {T_{\eta \eta } } \right)\) é de 4,303 m2 dia−1. A transmissividade equivalente é T e  = 7,767 m2 dia−1, e a relação de anisotropia é de 3.26. O Coeficiente de Armazenamento do aquífero é de 7.52 × 10−4, e a drenância da camada confinante superior é de 1.37 × 10−4 dia−1. As propriedades anisotrópicas determinadas nesta investigação para o campo de captações do Sul de Pasco confirmam os resultados de ensaios de caudal previamente realizados no local e ajudam a quantificar as tendências Noroeste-Sudeste a Nordeste-Sudoeste para os padrões das fracturas regionais e as zonas de fluxo inferidas pelas soluções realçadas na zona oeste e central da Flórida.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Bear J (1979) Hydraulics of Groundwater. McGraw-Hill, New York, 569 pp

    Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Trans Am Geophys Union 27(4):526–534

    Google Scholar 

  • Draper NR, Smith H (1981) Applied regression analysis, 2nd edn. Wiley, New York, 709 pp

    Google Scholar 

  • Hantush MS (1966) Analysis of data from pumping tests in anisotropic aquifers. J Geophys Res 71(2):421–426

    Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophys Union 36(1):95–100

    Google Scholar 

  • Hantush MS, Thomas RG (1966) A method for analyzing a drawdown test in anisotropic aquifers. Water Resour Res 2(2):281–285

    Article  Google Scholar 

  • Hsieh PA, Neuman SP, Stiles GK, Simpson ES (1985) Field determination of three-dimensional hydraulic conductivity tensor of anisotropic media, 2: methodology and application to fractured rocks. Water Resour Res 21(11):1667–1676

    Article  Google Scholar 

  • Knochenmus LA, Robinson JL (1996) Descriptions of anisotropy and heterogeneity and their effect on ground-water flow and areas of contribution to public supply wells in a karst carbonate aquifer system. US Geol Surv Water Suppl Pap 2475, 47 pp

  • Langevin CD (2003) Stochastic ground water flow simulation with a fracture zone continuum model. J Ground Water 41(5):587–601

    Article  Google Scholar 

  • Maslia ML (1994) Modifications to the computer program TENSOR2D. J Ground Water 32(3):501–502

    Article  Google Scholar 

  • Maslia ML, Prowell DC (1990) Effect of faults on fluid flow and chloride contamination in a carbonate aquifer system. J Hydrol 115(1990):1–49

    Article  Google Scholar 

  • Maslia ML, Randolph RB (1987) Methods and computer program documentation for determining anisotropic transmissivity tensor components of two-dimensional ground-water flow. US Geol Surv Water Suppl Pap 2308, 46 pp

  • Miller JA (1986) Framework of the Floridan aquifer system in Florida and in parts of Georgia, Alabama, and South Carolina. US Geol Surv Prof Pap 1403-B, 91 pp

  • National Research Council (1996) Rock fractures and fluid flow: contemporary understanding and applications. National Academy Press, Washington, DC, 551 pp

    Google Scholar 

  • Papadopulos IS (1965) Nonsteady flow to a well in an infinite anisotropic aquifer. Proceedings of the Dubrovnik Symposium on the Hydrology of Fractured Rocks, October 1965, International Association of Scientific Hydrology, Dubrovnik, Yugoslavia, pp 21–31

  • Quiñones-Aponte V (1989) Horizontal anisotropy of the principal ground-water flow zone in the Salinas Alluvial Fan, Puerto Rico. J Ground Water 27(4):491–500

    Article  Google Scholar 

  • Rohrich T (2005) Aquifer Test v. 4.0 User’s Manual. Waterloo Hydrogeologic, Waterloo, ON, Canada, 270 pp

  • Ryder PD (1985) Hydrology of the Floridan aquifer system in west-central Florida. US Geol Surv Prof Pap 1403-F, 63 pp

  • Scott TM (1988) The lithostratigraphy of the Hawthorn Group (Miocene) of Florida. Florida Geol Surv Bull 59, 148 pp

  • Sepúlveda N (2002) Simulation of ground-water flow in the intermediate and Floridan aquifer systems in peninsular Florida. US Geol Surv Water Resour Invest Rep 02-4009, pp. 130

  • Sinclair WC, Stewart JW, Knutilla RL, Gilboy AE, Miller RL (1985). Types, features, and occurrence of sinkholes in the karst of west-central Florida. US Geol Surv Water Resour Invest Rep 85–4126, 81 pp

  • Terra Environmental Services, Inc. (2005) Results of South Pasco wellfield aquifer performance testing. Consulting report prepared for Tampa Bay Water, Clearwater, FL

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. 16th annual meeting, part 2, American Geophysical Union, Washington, DC, pp 519–524

  • Vernon, RO (1951) Geology of Citrus and Levy Counties, Florida. Florida Bureau of GeolBull 53, Florida Bureau of Geololgy, Tallahassee, FL, 256 pp

  • Williams SR (1985) Relationship of ground water chemistry to photolineaments in a karst aquifer. MSci Thesis, University of South Florida, USA, 138 pp

  • Wolansky RM, Corral MA. Jr. (1985) Aquifer tests in west-central Florida, 1952–76. US Geol Surv Water Resour Invest Rep 84–4044, 127 pp

  • Wolansky RM, Barr GL, Spechler RM (1980) Configuration of the top of the highly permeable dolomite zone of the Floridan aquifer, Southwest Florida Water Management District. US Geol Surv Water Resour Invest Open-File Rep 80–433, 1 map

Download references

Acknowledgements

Thanks are expressed to M. L. Maslia, who provided the author with a copy of the FORTRAN computer code TENSOR2D (Maslia and Randolph 1987; Maslia 1994). Financial support for this investigation was provided in part by Tampa Bay Water, Clearwater, Florida, the US Geological Survey State Water Research Institute Program, and the Florida Water Resources Research Center. The information in this report represents the opinions and conclusions of the author and does not necessarily represent the official position of Tampa Bay Water, the US Geological Survey, or the Florida Water Resources Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis H. Motz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Tables

(PDF 15.2 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Motz, L.H. Multiple-pumped-well aquifer test to determine the anisotropic properties of a karst limestone aquifer in Pasco County, Florida, USA. Hydrogeol J 17, 855–869 (2009). https://doi.org/10.1007/s10040-008-0408-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0408-9

Keywords

Navigation