Skip to main content
Log in

Some limitations in using 222Rn to assess river–groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy)

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

222Rn was used to assess river–groundwater interactions within Castel di Sangro alluvial aquifer (Italy). The effectiveness of results obtained through this indicator was verified by also analyzing δ18O, major ions and temperature in both surface and groundwater, and carrying out piezometric head monitoring and discharge measurements. Hydrogeological investigations suggested that the river infiltrates into the aquifer in the south-eastern aquifer portion, while groundwater discharges into the river in the north-eastern portion. The latter phenomenon is supported by 222Rn data. Nevertheless, flow-through conditions cause the modelled discharge along this river reach, estimated by 222Rn data in a degassing-corrected two-component mixing model, to be greater than the measured discharge. Concerning river infiltration into the aquifer, δ18O, major ions and temperature data show that the river contribution is negligible in terms of aquifer recharge. Thus, the observed increase in 222Rn concentration in that portion of the aquifer is due to the enrichment process caused by infiltration of rainwater (222Rn free) which flows from the local divide area. Hence, in the study site, the use of only 222Rn to predict river–groundwater interactions causes some estimation inaccuracies and it must be coupled with other hydrochemical and hydrogeological parameters to gain a thorough understanding of such interactions.

Résumé

Le 222Rn a été utilisé pour évaluer les interactions nappe–rivière au sein de l’aquifère alluvial de Castel di Sangro (Italie). La qualité des résultats obtenus avec cet indicateur a été vérifiée par l’analyse de δ18O et des ions majeurs, par le contrôle de la température dans les eaux de surface et souterraines et par des mesures de niveaux piézomètriques et de débits. Les investigations hydrogéologiques ont suggéré que la rivière recharge la nappe dans la partie sud-est de l’aquifère, tandis que la nappe alimente la rivière dans la partie nord-est. Ce dernier processus est appuyé par les valeurs de 222Rn. Néanmoins, les conditions de flux continus entrainent un débit modélisé le long de cette partie de la rivière, supérieur à celui mesuré sur le terrain; le débit est estimé par les valeurs de 222Rn dans un modèle de mélange à deux composantes corrigé par le dégazeage. En ce qui concerne l’infiltration de la rivière, les valeurs de δ18O, des ions majeurs et de la température montrent que la contribution de la rivière est négligeable en terme de recharge des eaux souterraines. Ainsi, l’augmentation de la concentration en 222Rn, observée dans cette zone de l’aquifère, est causée par un processus d’enrichissement dû à l’infiltration des eaux pluviales (dépourvue en 222Rn) qui s’écoulent depuis la ligne locale de partage des eaux. En conséquence, sur ce site d’étude, l’utilisation seule du 222Rn pour évaluer les interactions nappe-rivière peut causer des imprécisions sur les estimations et elle doit être couplée à l’étude d’autres paramètres hydrochimiques et hydrogéologiques pour parvenir à une compréhension approfondie de ces interactions.

Resumen

222Rn fue usado para evaluar las interacciones río–agua subterránea dentro de la acuífero aluvial Castel di Sangro (Italia). La efectividad de los resultados obtenidos por medio de este indicador fue verificada al analizar también δ18O, iones mayores y temperatura en aguas superficiales y subterráneas, y realizando monitoreo de cargas hidráulicas y mediciones de descarga. Investigaciones hidrogeológicas sugirieron que el río infiltra el acuífero en su porción sureste, mientras que el agua subterránea se descarga en el río en la porción noreste. Este último fenómeno es respaldado por datos de 222Rn. Sin embargo, las condiciones del flujo provocan que la descarga modelada a lo largo de esta sección del río, estimada por datos 222Rn en un modelo mixto de dos componentes corregido para desgase, sea mayor que la descarga medida. Respecto a infiltración del río en el acuífero, δ18O, iones mayores y temperatura muestran que la contribución del río es insignificante en términos de recarga del acuífero. Entonces, el incremento observado en la concentración de 222Rn en esa porción del acuífero se debe al proceso de enriquecimiento causado por infiltración de agua de lluvia (libre de 222Rn) que fluye desde el área divisoria local. Por lo tanto, en el sitio de estudio el uso de solamente 222Rn para predecir las interacciones río-agua subterránea causa algunas inexactitudes de cálculo y debe ser acompañado con otros parámetros hidroquímicos e hidrogeológicos para alcanzar un conocimiento exhaustivo de tales interacciones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • APAT-IRSA (2003) Analytical methods for waters (in Italian). Serie APAT Manuali e Linee Guida 29/2003. APAT, Rome

  • Belloni P, Cavaioli M, Ingrao G, Mancini C, Notaro M, Santaroni P, Torri G, Vasselli R (1995) Optimization and comparison of three different methods for the determination of Rn-222 in water. Sci Total Environ 173/174:61–67

    Google Scholar 

  • Capelli G, Miccadei E, Raffi R (1997) Fluvial dynamics in the Castel di Sangro plain: morphological changes and human impact from 1875 to 1992. Catena 30:295–309

    Article  Google Scholar 

  • Celico F, Musilli I (2002) Recharge and groundwater flow in intramountain alluvial aquifers: experimental results in Castel di Sangro test site (Abruzzo) (in Italian). Quad Geol Appl 9:59–74

    Google Scholar 

  • Clark I, Fritz P (1997) Environmental isotopes in hydrogeology. Lewis, Boca Raton, FL, 328 pp

    Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 227:74–88

    Article  Google Scholar 

  • Cook P, Lamontagne S, Berhane D, Clark J (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42(10). DOI 10.1029/2006WR004921

  • Danckwerts PV (1951) Significance of liquid-film coefficients in gas absorption. Ind Eng Chem 43:1460–1467

    Article  Google Scholar 

  • Ellins KK (1992) Stable isotopic study of the groundwater of the Martha Brae river basin, Jamaica. Water Resour Res 28:1597–1604

    Article  Google Scholar 

  • Ellins KK, Roman-Mas A, Lee R (1990) Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. J Hydrol 115:319–341

    Article  Google Scholar 

  • Genereux D (2004) Comparison of naturally-occurring chloride and oxygen-18 as tracers of interbasin groundwater transfer in lowland rainforest, Costa Rica. J Hydrol 295:17–27

    Article  Google Scholar 

  • Genereux DP, Hemond HF (1990) Naturally occurring radon-222 as a tracer for streamflow generation: steady state methodology and field example. Water Resour Res 26:3065–3075

    Google Scholar 

  • Genereux DP, Hemond HF, Mulholland PJ (1993) Use of radon-222 and calcium in a three-end-member mixing model for streamflow generation on the west fork of Walker Branch watershed. J Hydrol 142:167–211

    Article  Google Scholar 

  • Genereux D, Pringle C (1997) Chemical mixing model of streamflow generation at La Selva Biological Station, Costa Rica. J Hydrol 199:319–330

    Article  Google Scholar 

  • Giggenbach WF, Gonfiantini R, Jangi BL, Truesdell AH (1983) Isotopic and chemical composition of Parbati valley geothermal discharges, North-West Himalaya, India. Geothermics 12:199–222

    Article  Google Scholar 

  • Hoehn E, von Gunten HR (1989) Radon in groundwater: a tool to assess infiltration from surface waters to aquifers. Water Resour Res 25:1795–1803

    Article  Google Scholar 

  • Hooper RP, Shoemaker CA (1986) A comparison of chemical and isotopic hydrograph separation. Water Resour Res 22:1444–1454

    Article  Google Scholar 

  • Landa ER (1991) Radon emanation from Uranium mill tailings. In: Gundersen LC, Wanty RB (eds) Field studies of radon in rocks, soil and water. Smoley, Boca Raton, FL, pp 145–154

    Google Scholar 

  • Lee R, Hollyday EF (1987) Radon measurements in stream to determine location and magnitude of ground-water seepage. In: Graves B (ed) Radon, radium and other radioactivity in groundwater. Lewis, Chelesea, MI, pp 241–249

    Google Scholar 

  • Lee R, Hollyday EF (1991) Use of radon measurements in Carter’s Creek, Maury County, Tennessee, to determine location and magnitude of groundwater seepage. In: Gundersen LC, Wanty RB (eds) Field studies of radon in rocks, soil and water. Smoley, Boca Raton, FL, pp 237–242

    Google Scholar 

  • Low R (1996) Radon as a natural groundwater tracer in the Chalk aquifer, UK. Environ Int 22(1):333–338

    Article  Google Scholar 

  • Mattei M, Miccadei E (1991) Strike-slip tectonics between the Marsica range and the Molisan basin in the Sangro valley (Abruzzo, Central Italy). Boll Soc Geol Italiana 110:737–745

    Google Scholar 

  • Négrel Ph, Petelet-Giraud E, Barbier J, Gautier E (2003) Surface water-groundwater interactions in an alluvial plain: chemical and isotopic systematics. J Hydrol 277:248–267

    Article  Google Scholar 

  • O’Connor DJ, Dobbins WE (1958) Mechanisms of reaeration in natural streams. Trans Am Soc Civil Eng 123:641–684

    Google Scholar 

  • Parotto M, Praturlon A (1975) Geological summary of the Central Apennines. In: Ogniben L, Parotto M, Praturlon A (eds) Structural model of Italy. Quad Ricerca Sci CNR 90:257–311

  • Peng TH, Takahashi T, Broecker WS (1974) Surface radon measurements in the North Pacific Ocean station Papa. J Geophys Res 79:1772–1780

    Article  Google Scholar 

  • Rogers AS (1958) Physical behaviour and geologic control of radon in mountain streams. Geological Bulletin No. 1052-E, US Geological Survey, Reston, VA

  • Surbeck H, Voelkle H (1988) Radionuclide content vs. grain size in soil samples. Sci Total Environ 69:379–389

    Article  Google Scholar 

  • USEPA (1978) Radon in water sampling program. EERF Manual 78–1, USEPA, Washington, DC

  • von Gunten HR, Kull TP (1986) Infiltration of inorganic compounds from the Glatt river, Switzerland, into a groundwater aquifer. Water Air Soil Pollut 29:333–346

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers whose insightful comments greatly improved the final version of the manuscript. The authors would like to thank also Dr. Damiano Centioli for his help with Ionic Chromatography measurements and Dr. Eng. Mario Mussi of the Stable Isotope Laboratory of the Geosciences and Georesources Institute of CNR-Pisa for stable isotope measurements (October 2003). Finally, the authors would like to thank the Servizio Idrografico e Mareografico Nazionale of Pescara for providing the meteorological data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisa Stellato.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stellato, L., Petrella, E., Terrasi, F. et al. Some limitations in using 222Rn to assess river–groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy). Hydrogeol J 16, 701–712 (2008). https://doi.org/10.1007/s10040-007-0263-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0263-0

Keywords

Navigation