Skip to main content
Log in

Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China

Investigations multitraceurs des interactions nappes-rivières: cas d’étude du bassin de la rivière Nalenggele, nord-ouest de la Chine

Investigación con múltiples trazadores de las interacciones entre río y agua subterránea: un estudio de caso en la cuenca del río Nalenggele, noroeste de China

用多种示踪剂调查河流和地下水的相互作用: 中国西北那棱格勒河流域研究实例

Investigação multitraçadores das interações rio e águas subterrâneas: estudo de caso na bacia hidrográfica de Nalenggele, noroeste da China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Environmental tracers (such as major ions, stable and radiogenic isotopes, and heat) monitored in natural waters provide valuable information for understanding the processes of river–groundwater interactions in arid areas. An integrated framework is presented for interpreting multi-tracer data (major ions, stable isotopes (2H, 18O), the radioactive isotope 222Rn, and heat) for delineating the river–groundwater interactions in Nalenggele River basin, northwest China. Qualitative and quantitative analyses were undertaken to estimate the bidirectional water exchange associated with small-scale interactions between groundwater and surface water. Along the river stretch, groundwater and river water exchange readily. From the high mountain zone to the alluvial fan, groundwater discharge to the river is detected by tracer methods and end-member mixing models, but the river has also been identified as a losing river using discharge measurements, i.e. discharge is bidirectional. On the delta-front of the alluvial fan and in the alluvial plain, in the downstream area, the characteristics of total dissolved solids values, 222Rn concentrations and δ18O values in the surface water, and patterns derived from a heat-tracing method, indicate that groundwater discharges into the river. With the environmental tracers, the processes of river–groundwater interaction have been identified in detail for better understanding of overall hydrogeological processes and of the impacts on water allocation policies.

Résumé

Les traceurs environnementaux (comme les ions majeurs, les isotopes stables et radiogéniques et la température) mesurés dans les eaux naturelles donnent une information importante pour comprendre les processus d’interaction entre les rivières et les eaux souterraines dans les régions arides. Une approche intégrative est. présentée pour l’interprétation des données des divers traceurs (ions majeurs, isotopes stables (2H, 18O), isotope radioactif 222Rn et température) pour la définition des interactions entre rivières et nappes du bassin de la rivière Nalenggele au nord-ouest de la Chine. Des analyses qualitatives et quantitatives ont été réalisées pour estimer les échanges d’eau bidirectionnels associés aux interactions à petite échelle entre les eaux souterraines et les eaux de rivière. Le long de portions de rivière, les eaux souterraines et de surface échangent facilement. De la partie montagneuse la plus élevée aux cônes alluviaux, un flux des eaux souterraines vers la rivière est. détecté par plusieurs traceurs et par l’utilization des modèles par mélange de pôles, mais des pertes de la rivière ont été également identifiées par mesure de débits, indiquant ainsi un échange bidirectionnel. Sur le front du delta du cône alluvial et sur la plaine alluviale, en secteur aval, les caractéristiques des valeurs de solide total dissous, les concentrations en 222Rn et les valeurs de δ18O dans les eaux de surface, de même que le schéma dérivé de la méthode de traçage thermique, indiquent que les eaux souterraines fluent vers la rivière. Avec les traceurs environnementaux, les processus d’interaction nappe-rivière ont été identifiés en détail pour une meilleure compréhension des processus hydrogéologiques globaux et des impacts de la politique d’attribution de l’eau.

Resumen

Los trazadores ambientales (tales como iones mayoritarios, isótopos estables y radiogénicos y temperatura) monitoreados en aguas naturales proporcionan información valiosa para entender los procesos de interacción río–agua subterránea en áreas áridas. Se presenta un marco integrado para interpretar los datos de múltiples trazadores (iones mayoritarios, isótopos estables (2H, 18O), isótopo radiactivo 222Rn y temperatura) para delinear las interacciones río–agua subterránea en la cuenca del río Nalenggele, noroeste de China. Se realizaron análisis cualitativos y cuantitativos para estimar el intercambio bidireccional de agua asociado a interacciones en pequeña escala entre el agua subterránea y el agua superficial. A lo largo de un tramo del río, agua subterránea y agua superficial se intercambian con facilidad. A partir de la zona de alta montaña hasta el abanico aluvial, la descarga de agua subterránea al río se detecta mediante métodos de trazadores y modelos de mezcla de miembros finales, pero el río también se identifica como un río perdedor usando mediciones de descarga, es decir, que la descarga es bidireccional. En el área aguas abajo, en el frente del delta del abanico aluvial y en la llanura aluvial, las características de los valores totales de sólidos disueltos, las concentraciones de 222Rn y los valores de δ18O en el agua superficial y los patrones derivados de un método del trazador térmico indican que el agua subterránea descarga en el río. Se identificaron en detalle los procesos de interacción río–agua subterránea con los trazadores ambientales para una mejor comprensión de los procesos hidrogeológicos generales y de los impactos en las políticas de distribución del agua.

摘要

天然水体中监测到的环境示踪剂(如主要离子、稳定同位素和放射产生的同位素以及热量)为了解干旱地区的河流和地下水相互作用过程提供了宝贵的信息。本文展示了为描述中国西北那棱格勒河流域河流地下水相互作用而进行的解译多种示踪剂数据(主要离子、稳定同位素(2H, 18O)、放射产生的同位素222Rn及热量)的综合框架。进行了定性和定量分析以估算与地下水和地表水之间小规模相作用相关的双向水交换。沿着河流流域,地下水和河水很容易交换。通过示踪方法和端元混合模型探测 到,从高山带到冲积扇,地下水排泄到河流,但采用排泄测量发现,河流也被确定为渗失河,即排泄是双向的。在下游区冲积扇的三角洲前锋及在冲积平原,地表水中的总溶解固体、222Rn含量及δ18O值特征及根据热量示踪方法得出的模式表明,地下水排泄到河流。利用环境示踪剂,详细确定了河流地下水相互作用的过程,以便更好地了解整个水文地质过程及其对水分配政策的影响。

Resumo

Os traçadores ambientais (tais como íons principais, isótopos estáveis e radiogênicos e calor) monitorados em águas naturais fornecem informações valiosas para a compreensão dos processos de interações rio–águas subterrâneas em áreas áridas. Um arcabouço integrado é apresentado para a interpretação de dados de múltiplos traçadores (íons principais, isótopos estáveis (2H, 18O), o isótopo radioativo 222Rn e calor) para delinear as interações rio–água subterrânea na bacia do rio Nalenggele, no noroeste da China. Análises qualitativas e quantitativas foram realizadas para estimar a troca bidirecional de água associada a interações em pequena escala entre águas subterrâneas e águas superficiais. Ao longo do trecho do rio, água subterrânea e água do rio trocam prontamente. Da zona de alta montanha ao delta aluvial, a descarga de água subterrânea para o rio é detectada por métodos de traçadores e modelos de mistura de membro final, mas o rio também foi identificado como uma corrente de perda usando medições de descarga, isto é, a descarga é bidirecional. Na face frontal do delta aluvial e na planície aluvial, na área a jusante, as características dos valores totais de sólidos dissolvidos, concentrações de 222Rn e valores de δ18O na água de superfície e padrões derivados de um método de traçador térmico indicam que as águas subterrâneas descarregam no rio. Com os marcadores ambientais, os processos de interação rio–água subterrânea foram identificados em detalhes para melhor compreensão dos processos hidrogeológicos globais e dos impactos nas políticas de alocação de água.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andersen MS, Acworth RI (2009) Stream-aquifer interactions in the Maules Creek catchment, Namoi Valley, new South Wales, Australia. Hydrogeol J 17(8):2005–2021

    Article  Google Scholar 

  • Banks EW, Simmons CT, Love P, Shand AJ (2011) Assessing spatial and temporal connectivity between surface water and groundwater in a regional catchment: implications for regional scale water quantity and quality. J Hydrol 404:30–49

    Article  Google Scholar 

  • Baskaran S, Ransley T, Brodie RS, Baker P (2009) Investigating groundwater–river interactions using environmental tracers. Aust J Earth Sci 56(1):13–19

    Article  Google Scholar 

  • Bertin C, Bourg ACM (1994) Radon-222 and chloride as natural tracers of the infiltration of river water into an alluvial aquifer in which there is significant river/groundwater mixing. Environ Sci Technol 28(5):794–798

    Article  Google Scholar 

  • Brodie RS, Sundaram B, Tottenham R, Hostetler S, Ransley T (2007) An adaptive management framework for connected groundwater-surface water resources in Australia. Bureau of Rural Sciences, Canberra, Australia

    Google Scholar 

  • Brunner P, Simmons CT, Cook PG (2009) Spatial and temporal aspects of the transition from connection to disconnection between rivers, lakes and groundwater. J Hydrol 376(1–2):159–169

    Article  Google Scholar 

  • Chapman T (1999) A comparison of algorithms for stream flow recession and baseflow separation. Hydrol Process 13:701–704

    Article  Google Scholar 

  • Chen ZY, Wan L, Nie ZL et al (2006) Identification of groundwater recharge in the Heihe Basin using environmental isotopes (in Chinese with English abstract). Hydrogeol Eng Geol 6:9–14

    Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277(1–2):74–88

    Article  Google Scholar 

  • Cook PG, Lamontagne S, Berhane D, Clark JF (2006) Quantifying groundwater discharge to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6. Water Resour Res 42(10):1–12

    Article  Google Scholar 

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

  • Dai Z, Samper J (2004) Inverse problem of multicomponent reactive chemical transport in porous media: formulation and applications. Water Resour Res 40:W074071–W0740718

    Article  Google Scholar 

  • Dai Z, Keating E, Gable CW, Levitt D, Heikoop J, Simmons A (2010) Stepwise inversion of a groundwater flow model with multi-scale observation data. Hydrogeol J 18:607–624

    Article  Google Scholar 

  • Doctor D, Jr A, Petrič EC et al (2006) Quantification of karst aquifer discharge components during storm events through end-member mixing analysis using natural chemistry and stable isotopes as tracers. Hydrogeol J 14:1171–1191

    Article  Google Scholar 

  • Ellins KK, Roman-Mas A, Lee R (1990) Using 222Rn to examine groundwater/surface discharge interaction in the Rio Grande de Manati, Puerto Rico. J Hydrol 115:319–341

    Article  Google Scholar 

  • Fox GA, Durnford DS (2003) Unsaturated hyporheic zone flow in stream/aquifer conjunctive systems. Adv Water Res 26(9):989–1000

    Article  Google Scholar 

  • Gordon RP, Lautz LK, Briggs MA, Mckenzie JM (2012) Automated calculation of vertical pore-water flux from field temperature time series using the vflux method and computer program. J Hydrol 420–421(4):142–158

  • Harvey JW, Wagner BJ, Bencala KE (1996) Evaluating the reliability of the stream tracer approach to characterize stream–subsurface water exchange. Water Resour Res 32(8):2441–2451

    Article  Google Scholar 

  • Hatch CE, Fisher AT, Revenaugh JS et al (2006) Quantifying surface water groundwater interactions using time series analysis of streambed thermal records: method development. Water Resour Res 42(10):1–14

    Article  Google Scholar 

  • Hatch CE, Fisher AT, Ruehl CR, Stemler G (2010) Spatial and temporal variations in streambed hydraulic conductivity quantified with time-series thermal methods. J Hydrol 389(3–4):276–288

    Article  Google Scholar 

  • Intissar F, Kamel Z, Kamel A, Mohamed A (2013) Hydrogeochemical investigation of surface and groundwater composition in an irrigated land in central Tunisia. J Afr Earth Sci 78:16–27

    Article  Google Scholar 

  • Kalbus E, Reinstorf F, Schirmer M (2006) Measuring methods for groundwater–surface water interactions: a review. Hydrol Earth Sys Sci 10(6):873–887

    Article  Google Scholar 

  • Keery J, Binley A, Crook N et al (2007) Temporal and spatial variability of groundwater surface water fluxes: development and application of an analytical method using temperature time series. J Hydrol 336(1/2):1–16

    Article  Google Scholar 

  • Kluge T, Ilmberger J, Von-Rohden C, Aeschbach-Hertig W (2007) Tracing and quantifying groundwater inflow into lakes using a simple method for radon-222 analysis. Hydrol Earth Syst Sci Discuss 11:1621–1631

    Article  Google Scholar 

  • Lamontagne S, Cook PG (2007) Estimation of hyporheic water residence time in situ using 222Rn disequilibrium. Limnol Oceanogr Methods 5:407–416

    Article  Google Scholar 

  • Li J, Wang H, Wei L (2007) Isotopic and hydrochemical characteristics of groundwater in the Golmud River basin (in Chinese with English abstract). Northwest Geol 40(4):94–100

    Google Scholar 

  • Martinez JL, Raiber M, Cendón DI (2017) Using 3D geological modelling and geochemical mixing models to characterise alluvial aquifer recharge sources in the Upper Condamine River catchment, Queensland, Australia. Sci Total Environ 574:1–18

    Article  Google Scholar 

  • Mitchell-Bruker SM (1993) Modeling steady state groundwater and surface water interactions. PhD Thesis, Indiana Univ, Bloomington, IN, 94 pp

  • Otz MH, Otz HK, Siegel DI (2003) Surface water/groundwater interaction in the Piora aquifer, Switzerland: evidence from dye tracing tests. Hydrogeol J 11(2):228–239

    Article  Google Scholar 

  • Payn RA, Gooseff MN, Mcglynn BL, Bencala KE, Wondzell SM (2009) Channel water balance and exchange with subsurface flow along a mountain headwater stream in Montana, United States. Water Resour Res 45(11):355–355

    Article  Google Scholar 

  • Schmidt A, Stringer CE, Haferkorn U, Schubert M (2009) Quantification of groundwater discharge into lakes using radon-222 as naturally occurring tracer. Environ Geol 56:855–863

    Article  Google Scholar 

  • Smerdon BD, Gardner WP, Harrington GA, Tickell SJ (2012) Identifying the contribution of regional groundwater to the baseflow of a tropical river (Daly River, Australia). J Hydrol 464:107–115

    Article  Google Scholar 

  • Sophocleous M (2002) Interactions between groundwater and surface water: the state of the science. Hydrogeol J 10:52–67

    Article  Google Scholar 

  • Stallman RW (1965) Steady one-dimensional fluid flow in a semi-infinite porous medium with sinusoidal surface temperature. J Geophys Res 70(12):2821–2827

    Article  Google Scholar 

  • Stellato L, Petrella E, Terrasi F, Belloni P, Belli M, Sansone U, Celico F (2008) Some limitations in using 222Rn to assess river–groundwater interactions: the case of Castel di Sangro alluvial plain (central Italy). Hydrogeol J 16:701–712

    Article  Google Scholar 

  • Su X, Xu W, Yang F, Zhu P (2015) Using new mass balance methods to estimate gross surface water and groundwater exchange with naturally occurring tracer 222Rn in data poor regions: a case study in northwest China. Hydrol Process 29(6):979–990

    Article  Google Scholar 

  • Wang W, Dai Z, Zhao Y et al (2016) A quantitative analysis of hydraulic interaction processes in stream–aquifer systems. Scientific Rep 6:19876. doi:10.1038/srep19876

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29:503–549

    Article  Google Scholar 

  • Winter TC, Harvey JW, Franke OL, Alley WM (1998) Groundwater and surface water: a single resource. US Geol Surv Circ 1139

  • Woessner WW (2000) Stream and fluvial plain ground water interactions: rescaling hydrogeologic thought. Ground Water 38(3):423–429

    Article  Google Scholar 

  • Wu Y, Wen X, Zhang Y (2004) Analysis of the exchange of groundwater and river water by using radon-222 in the middle Heihe Basin of northwestern China. Environ Geol 54(5):647–653

    Article  Google Scholar 

  • Zhu L, Gong H, Dai Z et al (2015) An integrated assessment of the impact of precipitation and groundwater on vegetation growth in arid and semiarid areas. Environ Earth Sci 74:5009–5021

    Article  Google Scholar 

Download references

Acknowledgements

This study was partially supported by the National Natural Science Foundation of China (Nos. 41602247 and 41372238). The authors are grateful to the two anonymous reviewers and editor whose insightful comments were very helpful in improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaosi Su.

Electronic supplementary material

ESM 1

(PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Su, X., Dai, Z. et al. Multi-tracer investigation of river and groundwater interactions: a case study in Nalenggele River basin, northwest China. Hydrogeol J 25, 2015–2029 (2017). https://doi.org/10.1007/s10040-017-1606-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-017-1606-0

Keywords

Navigation