Skip to main content
Log in

Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The disruption of lithologies by cross-cutting faults and the variability in volcanic structures make the hydrogeology of the rifted volcanic terrain in Ethiopia very complex. Along two transects, selected due to their hydrogeologic characteristics, groundwater flow, depth of circulation and geochemical evolution have been conceptualized. The groundwater flow continuity between the high rainfall plateau bounding the rift and the rift valley aquifers depends principally on the nature of the bounding faults. Up to 50% of recharge to the rift aquifers comes from the plateau as groundwater inflow where the rift is cross cut by transverse fault zones. Recharge from the mountains is found to be insignificant where the rift is bounded by marginal grabens; channel loss and local precipitation are the principal sources of recharge to the rift aquifers in such cases. At a regional scale, there is a clear zonation in the geochemical compositions of groundwaters, the result of aquifer matrix composition differences. The environmental isotope results show that the majority of the aquifers contain modern groundwaters. In a few localities, particularly in thermal groundwaters representing deeper circulation, palaeo-groundwaters have been identified. Deeper groundwaters in the rift floor have a uniform 14C age ranging between 2,300 and 3,000 years.

Résumé

La rupture des lithologies par des failles transversales les recoupant, et la variabilité au sein des structures volcaniques rend l’hydrogéologie des terrains volcaniques riftés en Éthiopie très complexe. Le long de deux transversales, sélectionnées pour leurs caractéristiques hydrologiques, l’écoulement de l’eau souterraine, la profondeur de la circulation et l’évolution géochimique ont été conceptualisées. La continuité de l’écoulement de l’eau souterraine entre le plateau bordant le rift et caractérisé par des précipitations élevées, et les aquifères de la vallée du rift, dépend principalement de la nature des failles de bordure. Jusqu’à 50 % de la recharge des aquifères du rift provient du plateau via la venue des eaux souterraines le long des failles découpant le rift. La recharge en provenance des montagnes apparaît insignifiante là ou le rift est bordé par des grabens marginaux. ; dans ces cas là les pertes au niveau des canaux et les précipitations locales sont les principales sources de recharge des aquifères du rift. A l’échelle régionale une zonation nette des compositions géochimiques des eaux souterraines apparaît, résultat des différentes compositions des aquifères. Les résultats apportés par les isotopes environnementaux montrent que la majorité des aquifères contiennent des eaux souterraines récentes. Dans quelques localités et particulièrement dans les eaux souterraines thermales représentant des circulations plus profondes, des paléos-eaux souterraines ont été identifiées. Les eaux souterraines plus profondes au mur du rift présentent des âges 14C uniformes, entre 2300 et 3000 ans.

Resumen

Los cambios litológicos por la existencia de fallas transversales y la variabilidad de las estructuras volcánicas hacen que la hidrogeología de los terrenos volcánicos en el Rift Etíope sea muy compleja. Se han conceptualizado dos transeptos, seleccionados por sus características hidrogeológicas, el flujo del agua, la profundidad de la circulación y su evolución geoquímica. La continuidad del flujo del agua subterránea entre la plataforma lluviosa elevada que bordea el rift y los acuíferos del Valle del rift depende principalmente de la naturaleza de las fallas de los bordes. Por encima del 50% de la recarga a los acuíferos del rift procede de la plataforma así como de la entrada de agua subterránea en las zonas donde el rift está cortado por zonas de fallas transversas. Se ha encontrado que la recarga procedente de las montañas es insignificante donde el rift está bordeado por graben marginales; en estos casos, la pérdida a partir de los cauces y la precipitación local constituyen las fuentes principales de recarga a estos acuíferos. En una escala regional, existe una zonación clara en la composición geoquímica de las aguas subterráneas, como resultado de diferencias en la composición de la matriz del acuífero. Los resultados de isótopos ambientales muestran que la mayoría de los acuíferos contienen aguas subterráneas modernas. En algunas localidades, particularmente las aguas termales representan circulaciones más profundas y se han identificado aguas subterráneas antiguas. Las aguas subterráneas más profundas en el suelo del rift tienen unas edades de 14C uniformes que varían entre 2300 y 3000 años.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Abebe T, Mazzarini F, Innocenti F, Manetti P (1998) The Yerer-Tullu Wellel volcano-tectonic lineament: a transitional structure in central Ethiopia and the associated magmatic activity. J African Earth Sci 26:135–150

    Article  Google Scholar 

  • Abebe T, Manetti P, Bonini M, Corti G, Innocenti F, Mazzarini M (2005) Geological map of the northern main Ethiopian Rift. The Geological Society of America, Boulder, CO

  • AWSSA (2002) Model verification for Akaki groundwater resource and proposed development alternatives, groundwater phase II. Report by BCEOM/Seureca Space/Tropics, Addis Ababa, Ethiopia

  • Ayenew T (1998) The Hydrogeological system of the Lake District basin, central main Ethiopian Rift. Publ. no. 64, PhD Thesis, ITC, the Netherlands

  • Ayenew T (2005) Major ions composition of the groundwater and surface water systems and their geological and geochemical controls in the Ethiopian volcanic terrain. SINET: Ethiopian J Sci 28:171–188

    Google Scholar 

  • Battistelli A, Yiheyi A, Calor C, Ferragina C, Abatneh W (2002) Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia. Geothermics 31:381–406

    Article  Google Scholar 

  • Bosellini A (1989) The East African continental margins. Geology 14:76–78

    Article  Google Scholar 

  • Chavez A, Davis SN, Sorooshian S (1994) Estimation of mountain front recharge to regional aquifers: 1. development of an analytical hydroclimatic model. Water Resour Res 30:2157–2167

    Article  Google Scholar 

  • Chebotarev II (1955) Metamorphism of natural waters in the crust of weathering. Parts 1–3. Geochim Cosmochim Acta 8:22–48

    Article  Google Scholar 

  • Chernet T (1982) Hydrogeology of the Lakes Region, Ethiopia. Ministry of Mines and Energy, Addis Ababa, Ethiopia

  • Chernet T, Travi Y, Valles V (2001) Mechanism of degradation of the quality of natural water in the lakes region of the Ethiopian Rift Valley. Water Res 35:2819–2832

    Article  Google Scholar 

  • Craig H, Lupton JE, Horowiff RM (1977) Isotope geochemistry and hydrology of geothermal waters in the Ethiopian Rift Valley. Report no. 160, Scripps Institute of Oceanography, University of California, San Diego, CA

  • D’Amore F, Panichi C (1987) Geochemistry in geothermal exploration, chapter 5. In: Economides MJ, Ungemach PO (eds) Applied geothermics. Wiley, New York, pp 69–88

    Google Scholar 

  • Darling WG (1996) The Geochemistry of fluid processes in the eastern branch of the East African rift system, PhD Thesis, British Geological Survey, Nottingham, UK

  • Darling WG, Gizaw B (2002) Rainfall–groundwater isotopic relationships in eastern Africa: the Addis Ababa anomaly. Study of environmental change using isotopic techniques. Papers series, IAEA, Vienna, pp 489–490

  • Darling G, Gizaw B, Arusei M (1996) Lake-groundwater relationships and fluid-rock interaction in the East African Rift Valley: isotopic evidence. J Afr Earth Sci 22:423–430

    Article  Google Scholar 

  • Edmunds WM, Carrillo-Rivera JJ, Cardon A (2002) Geochemical evolution of groundwater beneath Mexico City. J Hydrol 258:1–24

    Article  Google Scholar 

  • Edmunds WM, Guendouz AH, Mamou A, Moulla A, Shand P, Zouari K (2003) Groundwater evolution in the Continental Intercalaire aquifer of southern Algeria and Tunisia: trace element and isotopic indicators. Appl Geochem 18:805–822

    Article  Google Scholar 

  • Fontes J-Ch, Garnier M (1979) Determination of the initial activity of total dissolved carbon: a review of the existing models and a new approach. Water Resour Res 12:399–413

    Article  Google Scholar 

  • Gizaw B (1996) The origin of high bicarbonate and fluoride concentrations in waters of the Main Ethiopian Rift Valley, East African Rift system. J Afr Earth Sci 2:391–402

    Article  Google Scholar 

  • Gizaw B (2002) Hydrochemical and Environmental Investigation of the Addis Ababa Region, Ethiopia. PhD Thesis, Ludwig-Maximilians-University of Munich, Germany, 157 pp

  • Glynn PD, Plummer LN (2005) Geochemistry and understanding of groundwater systems. Hydrogeol J 13:263–287

    Article  Google Scholar 

  • Guendouz A, Moulla AS, Edmunds WM, Zouari K, Shand P, Mamou A (2003) Hydrogeochemical and isotopic evolution of water in the complex terminal aquifer in the Algerian Sahara. Hydrogeol J 11:483–493

    Article  Google Scholar 

  • IAEA (2006) http://isohis.iaea.orgWeb site of the Global Network of Isotopes in Precipitation (GNIP) and Isotope Hydrology Information System (ISOHIS). International Atomic Energy Agency, Vienna. http://isohis.iaea.org/. Cited 18 July 2007

  • Kebede S (2004) Approches isotopique et geochimique pour l’etude des eaux souterraines et des lacs : Exemples du haut bassin du Nil Bleu et du rift Ethiopien [Environmental isotopes and geochemistry in groundwater and lake hydrology: cases from the Blue Nile basin, main Ethiopian rift and Afar, Ethiopia], PhD Thesis, University of Avignon, France

  • Kebede S, Travi Y, Alemayehu T, Ayenew T (2005) Groundwater recharge, circulation and geochemical evolution in the source region of the Blue Nile River, Ethiopia. Appl Geochem 20:1658–1676

    Article  Google Scholar 

  • Manning AH, Solomon K (2004) Constraining mountain block recharge to the eastern Salt Lake valley with dissolved noble gas and tritium data. In: JF Hogan et al (eds) Groundwater recharge in a desert environment: the southwestern United States, Water Science Application Service. AGU 9:139–158

  • Manning AH, Solomon K (2005) An integrated environmental tracer to characterize groundwater circulation in mountain block. Water Resour Res 41:1–18

    Article  Google Scholar 

  • Njitchoua R, Sigha-Nkamdjou L, Devera L, Marlin C, Sighomnou D, Nia P (1999) Variations of the stable isotopic compositions of rainfall events from the Cameroon rain forest, Central Africa. J Hydrol 223:17–26

    Article  Google Scholar 

  • Rietti-Shati M, Yam R, Karlen W, Shemesh A (2000) Stable isotope composition of tropical high-altitude fresh-waters on Mt. Kenya, Equatorial East Africa. Chem Geol 166:341–350

    Article  Google Scholar 

  • Schoell M, Faber E (1976) Survey of Isotopic composition of waters from NE Africa. Geol Jb 17:197–213

    Google Scholar 

  • UNESCO (2006) Groundwater resources of the world: transboundary aquifer systems 1:50,000,000 scale, UNESCO, Paris

  • UNDP (1973) Geology, geochemistry and hydrology of hot springs of the East African Rift system within Ethioiopia. UNDP report DD/SF/ON-11, UNDP, New York, 300 pp

  • Wilson J, Guan H (2004) Mountain-block hydrology and mountain-front recharge. In: Phillips FM, Hogan J, Scanlon B (eds) Groundwater recharge in a desert environment: the south-western United States. AGU, Washington, DC

  • Zewdu E, Hogberg P (2000) Reconstruction of forest site history in Ethiopian highlands based on 13C natural abundances of soils. Ambio 29:83–89

    Google Scholar 

Download references

Acknowledgements

This paper addresses part of the objectives set by the Sustainable Management of Water Resource in the East-African Rift system (MAWARI) project. The data used in this paper is a compilation from previous works related to the International Atomic Energy Agency Technical Cooperation projects (ETH8003, ETH8005, ETH8006, ETH8007) conducted in collaboration with the Ethiopian Ministry of Water resources; the Ethiopian Geological Survey and the Addis Ababa University. SK acknowledges the financial support provided by International Center for Training and Exchanges in the Geosciences (CIFEG) (the coordinator of MAWARI project). SK and AA would like to thank the Swedish International Development Agency/The Department for Research Cooperation (SIDA/SAREC) for the seed grant meant for field investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seifu Kebede.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kebede, S., Travi, Y., Asrat, A. et al. Groundwater origin and flow along selected transects in Ethiopian rift volcanic aquifers. Hydrogeol J 16, 55–73 (2008). https://doi.org/10.1007/s10040-007-0210-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-007-0210-0

Keywords

Navigation