Skip to main content
Log in

Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Groundwater in the Hang-Jia-Hu Plain, eastern China, is a drinking water source for local residents. Groundwater samples were collected from large-diameter hand-dug wells and boreholes for comparison of their iron and manganese concentrations, as well as other ions. The results show that iron and manganese concentrations are relatively high, exceeding drinking water standards by several times. Aquifer sediment samples contain abundant iron (30,790 mg kg−1) and manganese (602 mg kg−1). The results of correspondence factor analysis of the hydrochemistry data and the liberation experiments (using seawater and rainwater as leachants) suggest that iron and manganese in shallow groundwater come from the sediment in the Holocene aquifer. A reductive environment involving relatively high total dissolved solids and organic carbon in the aquifer system is favorable to iron and manganese transferring from the sediment to groundwater and stabilizes these ions. Shallow, large-diameter hand-dug wells provide oxic conditions that decrease the concentrations of dissolved iron and manganese in the well water.

Résumé

Dans la Plaine de Hang-Jia-Hu, à l’Est de la Chine, les eaux souterraines constituent une ressource en eau potable pour les autochtones. Des échantillons d’eau souterraine ont été prélevés dans des puits de large diamètre creusés manuellement et dans des forages, afin de confronter leurs concentrations en fer, manganèse et autres ions. Les résultats montrent des concentrations en fer et manganèse relativement hautes, souvent au-delà des limites de potabilité. Les échantillons de sédiments de l’aquifère contiennent des quantités abondantes de fer (30,790 mg kg−1) et de manganèse (602 mg kg−1). Les résultats de l’analyse factorielle de correspondance des données hydrochimiques et des tests de libération (utilisant l’eau de mer et l’eau de pluie comme vecteurs) suggèrent que le fer et le manganèse contenus dans les aquifères superficiels proviennent des sédiments de l’aquifère holocène. Un environnement réducteur, impliquant une quantité élevée de solides dissous et de carbone organique dans le système aquifère, est favorable à un transfert du fer et du manganèse depuis les sédiments vers les eaux souterraines, et stabilise les ions considérés. Les puits peu profonds, de large diamètre et creusés à la main créent des conditions oxydantes qui abaissent les concentrations en fer et manganèse dissous dans l’eau du puits.

Resumen

El agua subterránea en la Llanura de Hang-Jia-Hu, al este de China, es una fuente de agua potable para los residentes locales. Las muestras de agua subterránea fueron recogidas en pozos de gran diámetro excavados a mano y en pozos barrenados con el objeto de comparar las concentraciones de hierro y manganeso, y también las de otros iones. Los resultados muestran que las concentraciones de hierro y manganeso son relativamente altas, excediendo varias veces los límites para agua potable. Las muestras de sedimentos tomadas del acuífero contienen abundante hierro (30,790 mg kg−1) y manganeso (602 mg kg−1). Los resultados del análisis de correspondencia de los datos hidroquímicos y experimentos de liberación (usando agua de mar y agua de lluvia como lixiviantes) sugieren que los iones hierro y manganeso en las aguas subterráneas someras provienen de los sedimentos acuíferos del Holoceno. Un ambiente reductor que contiene relativamente alta cantidad de sólidos totales disueltos y carbono orgánico en el sistema acuífero es favorable para la transferencia de hierro y manganeso desde los sedimentos al agua subterránea y para estabilizar estos iones. Los pozos poco profundos, de gran diámetro, excavados a mano, suministran condiciones de oxidación que disminuyen las concentraciones de hierro y manganeso disueltos en el agua del pozo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Board of General Editors in China Standard Press (BGECSP) (1991) Sanitary standard for drinking water (GB 5749-85). In: Compilation of National Standards of China, vol 62 (in Chinese). China. Standard Press, Beijing, pp 520–524

  • Board of General Editors in China Standard Press (BGECSP) (1997) Methods for examination of drinking natural mineral water (GB/T 8538-1995). In: Compilation of National Standards of China, vol 100 (in Chinese). China. Standard Press, Beijing, pp 322–468

  • Brown CJ, Walter DA, Colabufo S (1999) Fe in the aquifer system of Suffolk County. New York. US Geol Surv Wat Resou Invest Rep 99–4126:10

  • Department of Geology, Nanjing University (DGNU) (1979) Geochemistry (in Chinese). Science Press, Beijing, 507 pp

    Google Scholar 

  • Donohue JM, Abernathy CO, Lassovszky P, and Hallberg G (2004) The contribution of drinking-water to total daily dietary intakes of selected trace mineral nutrients in the United States. Rolling Revision of the WHO Guidelines for Drinking-Water Quality, WHO, Geneva, 23 pp

  • Edstrom Industries (2003) Fe and Fe bacteria in water. Waterford, WI, 10 pp

    Google Scholar 

  • Environmental Protection Agency, USA (EPA) (2006) Ground water and drinking water: current drinking water standards. http://www.epa.gov/safewater/mcl.html. Cited 1 March 2006

  • Fan M (1988) The application of Vyredox method regarding Fe removal from ground water in China. Ground Water 26(5):647–648

    Article  Google Scholar 

  • Greenacre MJ (1983) Theory and application of correspondence Analysis. Academic Press, New York, 254 pp

    Google Scholar 

  • Greenacre MJ (1993) Correspondence analysis in practice. Academic Press, New York, 276 pp

    Google Scholar 

  • Hem JD (1989) Study and interpretation of the chemical characteristics of natural water. USGS Water Suppl Pap 2254(3):263

    Google Scholar 

  • Lemley A, Schwartz JJ, Wagenet L (1999) Fe and Mn in household drinking water. Water Treatment Notes, Fact Sheet 6, Cornell Cooperative Extension, New York State College of Human Ecology, Cornell, NY, 7 pp

  • Li GB, Liu C (1989) Removing Fe from groundwater (in Chinese). Chinese Architecture Industry Press, Beijing, 235 pp

    Google Scholar 

  • Li XL (1988) Hydrogeochemistry (in Chinese). Atomic Energy Press, Beijing, pp 75–86

    Google Scholar 

  • Liap Z (1992) Environmental chemistry of trace elements and their biological effect. Chinese Environmental Science Press, Beijing, 320 pp

    Google Scholar 

  • Matthess G (1982) The properties of groundwater. Wiley, New York, 32 pp

  • Philbert FJ (1982) Major Ions. In: van Loon JC (ed) Chemical analysis of inorganic constituents of water. CRC Press, Boca Raton, FL, pp 90–120

    Google Scholar 

  • Ren MD, Wang NL (1981) An outline on modern sedimentary environments (in Chinese). Science Press, Beijing, 239 pp

    Google Scholar 

  • Shi YM, Li KY (1982) Clay minerals of the sediment in the shelf of the East China Sea. In: Institute of Oceanography, Chinese Academy of Science (ed) Geology of Yellow Sea and East China Sea (in Chinese). Science Press, Beijing, pp 105–122

    Google Scholar 

  • Sigleo AC, Hoering TC, Helz GR (1982) Composition of estuarine colloidal material: organic components. Geochim Cosmochim Acta 46:1619–1626

    Article  Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters, Wiley, New York, 554 pp

    Google Scholar 

  • Tessier AW, Campbell PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    Article  Google Scholar 

  • Warner N, Levy J, Harpp KS, Farruggia FT (2001) Groundwater quality in Nepal’s Kathmandu Valley: an assessment of controlling site characteristics. Abstracts with Programs, the Geological Society of America Annual Meeting. Boston, MA, November 2001, pp 136–137

  • Weng HX (1994) Influence of transgression in Holocene on quality of groundwater in Hangzhou, China. In: Suokko T, Soveri J (eds) Future groundwater resources at risk. Painatuskeskus, Helsinki, 433 pp

    Google Scholar 

  • Weng HX, Chen XH (2000) The impact of a polluted canal on soil, groundwater, and human health. Environ Geol 39(8):945–950

    Article  Google Scholar 

  • Wu DA, Weng HX (1987) Study on the influence of the medium environment of groundwater on contents of Fe and Mn ions (in Chinese). J Zhejiang Univ 21(5):54–62

    Google Scholar 

  • Wu DA, Weng HX (1988) A study on the distribution characteristics of Fe and Mn and the genesis of their content abnormity in Jing-Hang Grand Canal waters (Hangzhou segment) (in Chinese). J Zhejiang Univ (Science) 22(2):18–25

    Google Scholar 

  • Zhao LS, Zhang BR (1988) Geochemistry (in Chinese). Geology Press, Beijing, 401 pp

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Dun-Ao Wu and Yong Wang for their help with the outdoor and indoor work, and Chong-Xuan Liu is also appreciated for his helpful data processing and field survey. Thanks are also given to Charlie Flowerday for his editorial review. Geology and Resources Administration of Zhejiang Province supplied some borehole data. Department of Environment Protection, Zhejiang Agriculture University, supplied the data of organic contents in cultivated soils. Support is provided by the National Natural Science Foundation of China (Grant no. 40572175).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan-Xin Weng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weng, HX., Qin, YC. & Chen, XH. Elevated iron and manganese concentrations in groundwater derived from the Holocene transgression in the Hang-Jia-Hu Plain, China. Hydrogeol J 15, 715–726 (2007). https://doi.org/10.1007/s10040-006-0119-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0119-z

Keywords

Navigation