Skip to main content
Log in

From well-test data to input to stochastic continuum models: effect of the variable support scale of the hydraulic data

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The question of how well the true underlying hydraulic conductivity statistics of heterogeneous media are captured by well tests is addressed. The hydraulic conductivity value and the corresponding support volume associated with a theoretical well are correlated, causing a bias in the statistics derived from well-test analyses. Statistics derived from numerically simulated well tests are compared with the known underlying conductivity statistics and the results indicate an under-prediction by simulations at higher hydraulic conductivities. The deviation starts at about mean conductivity and can be as large as an order of magnitude, with the conductivity in the vicinity of the well defining the upper boundary. In other words, the conductivity value interpreted from the well test cannot be larger than the value that the well test first encounters. Consequently, for data in this simulation exercise, the standard deviation, if only determined for the upper range of the conductivity values, would be underestimated by a factor of 1.6–2. While this specific range is likely to depend on the scale and degree of the underlying heterogeneity as well as the duration of the test, the results should be indicative of a more general behaviour and are likely to occur in other heterogeneous data as well.

Résumé

Nous posons ici la question de savoir dans quelle mesure les statistiques de la conductivité hydraulique des milieux hétérogènes pourrait être révélée par des essais de puits. La valeur de la conductivité hydraulique et le volume capté correspondant sont corrélés, créant un biais dans l’analyse des statistiques dérivées des essais de puits. Les statistiques en provenance de simulations numériques d’essais de puits sont comparées avec les statistiques de conductivités connues et les résultats indiquent une sous-évaluation par les simulations, pour les conductivités hydrauliques les plus élevées: la déviation commence à partir de la valeur moyenne de la conductivité et peut atteindre la magnitude d’un ordre de grandeur en considérant la conductivité mesurée au voisinage du puits. Autrement dit, la valeur de la conductivité interprétée via l’essais de pompage ne peut être plus importante que les premières valeurs rencontrées. Par conséquence, pour les données de cet exercice de simulation, la déviation standard sera sous-estimée d’un facteur compris entre 1.6–2 pour les valeurs les plus élevées. Tandis que l’échelle spécifique de valeurs est dépendante de l’échelle et du degré de l’hétérogénéité souterraine, de même que de la durée du test, les résultats pourraient être indicatifs d’un comportement plus général et seraient sans doute observables dans d’autres cas de données hétérogènes.

Resumen

Se plantea la pregunta de qué tan bien son representadas en las pruebas de pozo, las estadísticas reales de conductividad hidráulica subyacente de medios heterogéneos. Son correlacionados el valor de conductividad hidráulica y el volumen de apoyo correspondiente asociado con un pozo teórico, causando una distorsión en las estadísticas derivadas del análisis de la prueba de pozo. Las estadísticas derivadas de las pruebas de pozo simuladas numéricamente son comparadas con las estadísticas de conductividad subyacente conocidas, y los resultados indican una sub-predicción por las simulaciones hechas con conductividades hidráulicas más altas. La desviación empieza casi con la conductividad media y puede ser tan grande como un orden de magnitud, con la conductividad en la vecindad del pozo definiendo el límite superior. En otras palabras, el valor de conductividad interpretado a partir de la prueba del pozo no puede ser más grande que el valor que la prueba de pozo encuentre primero. Por consiguiente, para los datos en este ejercicio de simulación, la desviación estándar, si solamente fue determinada para el rango superior de los valores de conductividad, se subestimaría en un factor de 1.6–2. Mientras es probable que este rango específico dependa de la escala y del grado de la heterogeneidad subyacente, así como de la duración de la prueba, los resultados deben ser indicativos de un comportamiento más general y son probables también de ocurrir en otros datos heterogéneos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Armitage P, Holton D, Jefferies NL, Myatt BJ, Wilcock PM (1996) Groundwater flow through fractured rock at Sellafield. Final report, EUR 16870 EN, Nuclear Science and Technology Series, EC publications, Brussels

  • Barker JA (1988) A generalized radial-flow model for pumping tests in fractured rock. Water Resour Res 24(10):1796–1804

    Google Scholar 

  • Beckie R, Harvey CF (2002) What does a slug test measure: an investigation of instrument response and the effects of heterogeneity. Water Resour Res 38(12):1290. DOI 10.1029/2001WR001072

  • Cacas MC, Ledoux E, de Marsily G, Tillie B, Barbreau A, Durnad E, Feuga B, Peaudecerf P (1990) Modeling fracture flow with stochastic discrete fracture network: calibration and validation. 1. Flow model. Water Resour Res 26(3):479–489

    Article  Google Scholar 

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well field history. Trans Am Geophys Union 27:526–534

    Google Scholar 

  • Desbarats AJ (1992) Spatial averaging of transmissivity in heterogeneous fields with flow towards a well. Water Resour Res 28(3):757–767

    Article  Google Scholar 

  • Desbarats AJ (1994) Spatial averaging of hydraulic conductivity under radial flow conditions. Math Geol 26(1):1–21

    Article  Google Scholar 

  • Desbarats AJ, Bachu S (1994) Geostatistical analysis of aquifer heterogeneity from the core scale to the basin scale: a case study. Water Resour Res 30(3):673–684

    Article  Google Scholar 

  • Deutsch CV, Journel AG (1998) GSLIB, Geostatistical Software Library and User’s Guide. 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Follin S (1992) On the interpretation of double-packer tests in heterogeneous porous media: numerical simulations using the stochastic continuum analogue. TR-92-36. SKB, Stockholm

    Google Scholar 

  • Gelhar LW, Axness CL (1983) Three-dimensional stochastic analysis of macrodispersion in aquifers. Water Resour Res 19(1):161–180

    Article  Google Scholar 

  • Gomez-Hernandez J, Gorelick SM (1989) Effective groundwater model parameter values: influence of spatial variability of hydraulic conductivity, leakance and recharge. Water Resour Res 25(3):405–420

    Google Scholar 

  • Gutjahr AL, Gelhar LW, Bakr AA, MacMillan JR (1978) Stochastic analysis of spatial variability in subsurface flows. 2. Evaluation and application. Water Resour Res 15(5):953–959

    Google Scholar 

  • Jacob CE, Lohman SW (1952) Nonsteady flow to a well of constant drawdown in an extensive aquifer. Trans Am Geophys Union 33(4):559–569

    Google Scholar 

  • Journel AG, Huijbregts C (1978) Mining geostatistics. Academic press, New York, p 600

    Google Scholar 

  • KASAM (2001) Nuclear waste, state-of-the-art-reports 2001. SOU 2001:35, KASAM, Swedish National Council for Nuclear Waste, Stockholm.

  • Kitanidis PK (1997) Introduction to geostatistics: applications in hydrogeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Kuusela-Lahtinen A, Niemi A, Luukkonen A (2003) Flow dimension as an indicator of hydraulic behaviour in site characterization of fractured rock. Ground Water 4(3):333–341

    Article  Google Scholar 

  • Lachassagne P, Ledoux E, de Marsily G (1989) Evaluation of hydrogeological parameters in heterogeneous porous media. In: Groundwater management: quantity and quality, IAHS Publ. 188, IAHS, Wallingford, UK, pp 3–18

  • Martinez-Landa L, Carrera J (2005) An analysis of hydraulic conductivity scale effects in granite (Full-scale Engineered Barrier Experiment (FEBEX), Grimsel, Switzerland). Water Resour Res 41:1–13. DOI 10.1029/2004WR003458

    Google Scholar 

  • Meier PM, Carrera J, Sanchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34(5):1011–1025

    Article  Google Scholar 

  • Meier PM, Carrera J, Sanchez-Vila X (1999) A numerical study on the relationship between transmissivity and specific capacity in heterogeneous aquifers. Ground Water 37(4):611–617

    Article  Google Scholar 

  • Moye DG (1967) Diamond drilling for foundation exploration. Civ Eng Trans Inst Eng Aust CE9:95–100

    Google Scholar 

  • Niemi A, Kontio K, Kuusela-Lahtinen A, Poteri A (2000) Hydraulic and upscaling characteristics of fracture networks based on multiple scale well test data. Water Resour Res 36(12):3481–3499

    Article  Google Scholar 

  • Neuman SP (1987) Stochastic continuum representation of fractured rock permeability as an alternative to the REV and fracture network concepts. In: Farmer IW et al (eds) Proc. 28th US Symposium on Rock Mechanics, Tuscon, AZ, 29 June–1 July 1987. Balkema, Lisse, pp 533–561

    Google Scholar 

  • Neuman SP, Guadagnini A, Riva M (2004) Type-curve estimation of statistical heterogeneity. Water Resour Res 40, W04201. DOI 10.1029/2003WR002405)

  • Neville CJ, Markle JM (2000) Interpretation of constant-head tests: Rigorous and approximate analyses. Paper presented at the First Joint IAH-CNC/CGS Groundwater Specialty Conference Montreal, Quebec. 15–18 October 2000

  • Öhman J, Niemi A (2003) Upscaling of fracture hydraulics by means of oriented correlated stochastic continuum model. Water Res Res 39(10):1277, DOI 10.10292002WR001776

    Google Scholar 

  • Öhman J, Niemi A, Tsang CF (2005) A regional-scale particle-tracking method for nonstationary fractured media. Water Resour Res 41(3). DOI 10.1029/2004WR003498

  • Pruess K (1991) TOUGH2: a general-purpose numerical simulator for multiphase fluid and heat flow, Report LBL-29400, Lawrence Berkeley Lab, Berkeley, CA, pp 102

  • Renard P, de Marsily G (1997) Calculating equivalent permeability: a review. Adv Water Res 20:253–278

    Article  Google Scholar 

  • Rovey CW II (1998) Digital simulation and verification of the scale effect in hydraulic conductivity. Hydrogeol J 6:216–225

    Article  Google Scholar 

  • Rovey CW II, Cherkauer DS (1995) Scale dependency of hydraulic conductivity measurements. Ground Water 33(5):769–780

    Article  Google Scholar 

  • Rovey CW II, Niemann WL (2001) Wellskins and slug tests: Where’s the bias? J Hydrol 243:120–132

    Article  Google Scholar 

  • Sánchez-Vila X, Carrera J, Girardi JP (1996) Scale effects in transmissivity. J Hydrol 183:1–22

    Article  Google Scholar 

  • Sánchez-Vila X, Meier PM, Carrera J (1999) Pumping tests in heterogeneous aquifers: an analytical study of what can be obtained from their interpretation using Jacob’s method. Water Resour Res 35(4):943–952

    Article  Google Scholar 

  • Schad H, Teutsch G (1994) Effects of the investigation scale on pumping test results in heterogeneous porous aquifers. J Hydrol 159:61–77

    Article  Google Scholar 

  • Smith L, Freeze A (1979) Stochastic analysis of steady state groundwater flow in bounded domain. 2. Two-dimensional simulations. Water Resour Res 15(6):1543–1559

    Google Scholar 

  • Wen XH, Gomez-Hernandez JJ (1996) Upscaling hydraulic conductivities in heterogeneous media: an overview. J Hydrol 183(1–2):9–13

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank SKB (Swedish Nuclear Fuel and Waste Management Co.) for their financial support. The authors would also like to acknowledge the constructive comments by two anonymous reviewers for improving the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Odén.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Odén, M., Niemi, A. From well-test data to input to stochastic continuum models: effect of the variable support scale of the hydraulic data. Hydrogeol J 14, 1409–1422 (2006). https://doi.org/10.1007/s10040-006-0063-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-006-0063-y

Keywords

Navigation