Skip to main content
Log in

Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.

Résumé

La cartographie systématique des linéaments de fracture observés sur les photos aériennes montrent que ces structures sont positivement corrélés avec des zones macroscopiques et mésoscopiques de fréquences notables de fracture en comparaison avec leur entourage. Les linéaments sont subdivisés en zones de différentes caractéristiques : (1) une zone centrale de roches faillées, une fréquence de fracturation importante et une certaine connectivité mais fréquemment des fractures minéralement combles (2) une zone d’accident divisée en une zone proche avec une fréquence intense de linéaments parallèles, non minéralisés et ne se recoupant pas, évoluant vers une zone de transition avec de faibles fréquences de fracturation et plus loin une zone avec un fond général de fracturation. Pour examiner la possible corrélation entre l’architecture des linéaments et le degré de stress de l’écoulement des eaux souterraines, les levés géologiques de terrain ont été complétés par des essais de stress sur les écoulements des eaux souterraines et des essais de puits sur des sites sélectionnés. Les sondages géophysiques ajoutent une information valorisante sur la distribution des fractures et l’écoulement de fracture en profondeur. Basés sur l’étude du stress in-situ ainsi que sur les linéaments et les systèmes associés de fractures présentés précédemment, deux hypothèses de travail ont été développées : (i) Dans les zones présentant un simple fond de fracturation et dans les zones de transition des linéaments, l’écoulement des eaux souterraines est localisé dans les linéaments parallèlles avec le stress in-situ le plus important, à moins que les fractures soient chargées ou réactivées comme des fractures de cisaillement avec des angles entre 30 et 0°, (ii) dans la zone d’influence des linéaments, le meilleur potentiel pour l’exploitation des eaux souterraines est dans la zone proche, où la fréquence de fracturation est très importante, de même que la connectivité, avec des remplissages de fracture négligeables. L’essais de validation de ces deux hypothèses ne donne pas une réponse claire et univoque sur les deux hypothèses de l’eau souterraine dans la zone d’étude. Néanmoins la plus part des données observées sont en accord avec la prédiction des modèles, et peuvent être expliquées par l’action de contraintes du sol sur les fractures pré-existantes.

Resumen

El mapeo sistemático de campo de lineamientos-fractura observados en fotografías aéreas muestra que casi todas estas estructuras se correlacionan positivamente con zonas macroscópicas y mesoscópicas de alta frecuencia de fracturamiento en comparación con los alrededores. Los lineamientos se subdividen en zonas con características distintas: (1) una zona central con rocas de falla, fracturamiento de alta frecuencia y conectividad pero frecuentemente con fracturas selladas con minerales, y (2) una zona dañada dividida en una zona próxima con fracturamiento de alta frecuencia de lineamientos paralelos, no mineralizada, y fracturas interconectadas graduando a una zona alejada con frecuencia de fracturamiento menor y la cual es transicional a las áreas vecinas con fracturamiento de fondo general. Para examinar las relaciones posibles entre la estructura de los lineamientos y los esfuerzos de la roca in-situ en el flujo de agua subterránea se continuó el trabajo geológico de campo con mediciones in-situ de esfuerzos y pruebas en pozos en sitios seleccionados. El registro geofísico de pozos agregó información valiosa acerca de la distribución de fracturas y el flujo en fracturas a profundidad. Basado en los estudios de esfuerzos in-situ así como también en los lineamientos y sistemas de fractura asociados que se presentaron arriba se han formulado dos hipótesis de trabajo para el flujo de agua subterránea: (i) en áreas con fracturamiento de fondo general y en la zona lejana de lineamientos, el flujo de agua subterránea ocurrirá principalmente a lo largo de fracturas paralelas con los esfuerzos más grandes in-situ de la roca, a menos que las fracturas estén críticamente cargadas o reactivadas como fracturas de cizalla en ángulos que varían de 30° a 0°, (ii) en el área de influencia de lineamientos, el mayor potencial para la abstracción de agua subterránea se encuentra en la zona próxima, donde existe una frecuencia de fracturamiento alta y conectividad con relleno de fracturas insignificante. La evaluación de las dos hipótesis no aporta una respuesta clara e inequívoca en apoyo de los dos supuestos acerca del flujo de agua subterránea en el área de estudio. Sin embargo, la mayoría de datos observados concuerda con las predicciones de los modelos lo cual puede explicarse por la acción del campo de esfuerzos actual sobre las fracturas preexistentes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andersen TB, Jamtveit B (1990) Uplift of deep crust during orogenic extensional collapse: Model based on field studies in the Sogn-Sunnfjord region of W. Norway. Tectonics 9:1097–1111

    Article  Google Scholar 

  • Andersen TB (1998) Extensional tectonics in the Caledonides of southern Norway, an overview. Tectonophysics 285:333–351

    Article  Google Scholar 

  • Andersen TB, Torsvik TH, Eide EA, Osmundsen PT, Faleide JI (1999) Permian and Mesozoic extensional faulting within the Caledonides of central south Norway. J Geol Soc Lond 156:1073–1080

    Article  Google Scholar 

  • Banks D, Odling NE, Skarphagen H, Rohr-Torp E (1996) Permeability and stress in crystalline rocks. Terra Nova 8:223–235

    Article  Google Scholar 

  • Banks D (1991) Boring og prøvepumping av hydrogeologiske testhull i en grønnstein akvifer, Østmarkneset, Trondheim. (Drilling and test pumping of boreholes in a greenstone aquifer, Østmarkneset, Trondheim). Geol Surv Norway Rep 91.213

  • Barton AB, Zoback MD, Moos D (1995) Fluid flow along potentially active faults in crystalline rock. Geology 238:683–686

    Article  Google Scholar 

  • Berg SS (2000) Strukturell analyse av bruddsoner med hensyn på grunnvannspotensialet i oppsprukne bergarter. (Structural analysis of fracture zones in relation to groundwater potential in fractured rocks). MSc thesis, Department of Geology University of Bergen, (Norway)

  • Braathen A, Henriksen H (1997) Post-Devonian fracture systems in the Sunnfjord region, onshore Western Norway. Geol Surv Norway Bull 433:16–18

    Google Scholar 

  • Braathen A (1999) Kinematics of post-Caledonian polyphase brittle faulting in the Sunnfjord region, western Norway. Tectonophysics 302:99–121

    Article  Google Scholar 

  • Braathen A, Gabrielsen R (1998) Lineament architecture and fracture distribution in metamorphic and sedimentary rocks, with application to Norway. Geol Surv Norway Rep 98.043

  • Braathen A, Gaut S, Henriksen H, Storrø G, Jæger Ø (1998) Holmedal brønnfelt, Sunnfjord: Geologiske undersøkelser og prøvepumping. (Holmedal well site, Sunnfjord: Geological investigations and test pumping). Geol Surv Norway Rep 98.085

  • Braathen A, Berg S, Storrø G, Jæger Ø, Henriksen H, Gabrielsen G (1999) Bruddsonegeometri og grunnvannstrøm; resultater fra bruddstudier og testboringer i Sunnfjord. (Fracture-zone geometry and groundwater flow; results from fracture studies and test-drilling in Sunnfjord. Geol Surv Norway Rep 99.017

  • Braathen A, Osmundsen PT, Gabrielsen RH (2004) Dynamic development of fault rocks in a crustal-scale detachment; an example from western Norway. Tectonics 23(4):TC4010, 27p

    Article  Google Scholar 

  • Brook GA (1988) Hydrogeological factors influencing well productivity in the crystalline rocks of Georgia. Southeastern Geol 29:65–81

    Google Scholar 

  • Caine JS, Evans JP, Forster CB (1996) Fault zone architecture and permeability structure. Geology 24:1025–1028

    Article  Google Scholar 

  • Chapman CA (1958) Control of jointing by topography. J Geol 66:552–558

    Article  Google Scholar 

  • Cohen AJB (1995) Hydrogeologic Characterization of Fractured Rock Formations: A Guide for Groundwater Remediators Report LBL-38142, Earth Sciences Division Ernest, Orlando Lawrence Berkeley National Laboratory Berkeley Lab. University of California, Berkeley, USA

    Google Scholar 

  • Dehls JF, Olesen O, Bungum H, Hicks EC, Lindholm CD, Riis F (2000) Neotectonic map: Norway and adjacent areas, 1:3,000,000. Geol Surv Norway

  • Driscoll FG (1986) Groundwater and Wells. St. Paul. Johnson Division

  • Eide EA, Torsvik TH, Andersen TB (1997) Absolute dating of brittle fault movements: Late Permian and Late Jurassic extensional fault breccias in western Norway. Terra Nova 9:135–139

    Google Scholar 

  • Eide EA,Torsvik TH, Andersen TB, Arnaud NO (1999) Early Carboniferous unroofing in western Norway: a tale of alkali feldspar thermochronology. J Geol 107:353–374

    Article  Google Scholar 

  • Elvebakk H, Lauritsen T (1997) Geofysiske undersøkelser. Bruddsoner og grunnvann i Sunnfjord. (Geophysical investigations. Fracture zones and groundwater in Sunnfjord). Geol Surv Norway Rep 97.050

  • Elvebakk H, Rønning JS (2002) Borehullslogging i fjellbrønn, Holmedal, Sunnfjord. Verifisering av hydrogeologisk model med hensyn til bergspenning, oppsprekking og strømningsretning. (Well logging of hard rock well, Holmedal, Sunnfjord. Verification of hydrogeological model with respect to rock stresses, fracturing and groundwater flow). Geol Surv Norway Rep 2002.093

  • Elvebakk H, Rønning JS, Storrø G (2002) Borehullslogging i fjellbrønn, Follvåg, Sunnfjord. En verifisering av lineamentsmodel med hensyn til oppsprekking og vanngiverevne. (Well logging of hard rock well, Folvåg, Sunnfjord. A verification of lineament model with respect to fracturing and well yield). Geol Surv Norway Rep 2002.078

  • Evans JP, Forster CB, Goddard JV (1997) Permeability of fault-related rocks and implications for hydraulic structure of fault zones. J Struct Geol 19:(11):1393–1404

    Article  Google Scholar 

  • Fejerskov M, Lindholm CD (2000) Crustal stresses in and around Norway; an evaluation of stress generating mechanisms In: Nottvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ No. 167, pp 451–467

    Google Scholar 

  • Fejerskov M, Lindholm CD, Myrvang A, Bungum H (2000) Crustal stresses in and around Norway: a compilation of in situ stress observations. In: Nottvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ No. 167, pp 441–449

    Google Scholar 

  • Ferril DA, Winterle J, Wittmeyer G, Sims D, Colton S, Armstrong A (1999) Stressed rock strains groundwater at Yucca Mountain, Nevada GSA Today 9(5):1–8

    Google Scholar 

  • Gabrielsen R, Braathen A, Dehls J, Roberts D (2002) Tectonic lineaments of Norway. Norwegian J Geol 82:153–174

    Google Scholar 

  • Gaut S, Storrø G, Bjørnstad H, Braathen A (1999) Holmedal brønnfelt, Sunnfjord: Langtids prøvepumping og tracertester. (Holmedal well site, Sunnfjord: Long-term pumping tests and tracer experiments). Geol Surv Norway Rep 99.016

  • Gernand JD, Heidtman JP (1997) Detailed pumping test to characterize a fractured bedrock aquifer. Ground Water 35(4):632–637

    Article  Google Scholar 

  • Goldstein A, Marshak S (1988) Analysis of fracture array geometry. In: Marshak S, Mitra G (ed) Basic methods of structural geology. Prentice Hall. Englewood cliffs, New Jersey, 249–267

    Google Scholar 

  • Gudmundsson A (1999) Postglacial crustal doming, stresses and fracture formation with application to Norway. Tectonophysics 307:407–419

    Article  Google Scholar 

  • Hancock PL (1985) Brittle Microtectonics: principles and practice. J Struct Geol 7(3/4):437–457

    Article  Google Scholar 

  • Hansen SE (1996) Spenningsmåling ved hydraulisk splitting, Hestad og Atløy i Sogn og Fjordane. (Measurements of rock stresses by hydraulic splitting, Hestad and Atløy, Sogn og Fjordane). SINTEF Civil and Environmental Engineering Report STF22 F96090. Trondheim (Norway)

  • Henning H, Elvebakk H (2001) Processing and analysis of acoustic borehole data from the Sunnfjord area and the Oslo region for evaluation of fracturing and possible water movements in rock). Geol Surv Norway Intern Rep 2001.14

  • Henriksen H (1995) Relation between topography and borehole yield in boreholes in crystalline rocks, Sogn og Fjordane, Norway. Ground Water 33(4):635–643

    Article  Google Scholar 

  • Henriksen H (2003) The role of some regional factors in the assessment of well yields from hard-rock aquifers of Fennoscandia. Hydrogeol J 11(6):628–645

    Article  Google Scholar 

  • Kim G-B, Lee J-Y, Lee K-K (2004) Construction of lineament maps related to groundwater occurrence with Arcview and Avenue scripts. Comp Geosci 30(9/10):1117–1126

    Article  Google Scholar 

  • Krásný J (2002) Quantitative hardrock hydrogeology in a regional scale. Geol Surv Norway Bull 439:7–14

    Google Scholar 

  • Lindholm CD, Bungum H, Hicks EC, Villagran M (2000) Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. In: Nottvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ No. 167, pp 441–449

  • Mabee SB (1998) Factors influencing well productivity in glaciated metamorphic rocks. Ground Water 37(1):88–97

    Article  Google Scholar 

  • Midtbø E (1996) Bergspenninger på Nordvestlandet. (Rock Stresses in northwestern Norway). Project report NTNU, Institute for Geology and Rock Mechanics, Trondheim (Norway)

  • Miller DJ, Dunne T (1996) Topographic perturbations of regional stresses and consequent fracturing. J Geophys Res 101:25523–25536

    Article  Google Scholar 

  • Morin H, Savage WZ (2002) Topographic stress perturbations in southern Davis Mountains, west Texas 2. Hydrogeologic implications. J Geophys Res 107:(B122340), doi:10.1029/2001JB0004882002

  • Morland G (1997) Petrology, Lithology, Bedrock Structures, Glaciation and Sea Level. Important Factors for Groundwater Yield and Composition of Norwegian Bedrock Boreholes? Geol Surv Norway Rep 97.122 I

  • Morris AP, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24:275–278

    Article  Google Scholar 

  • Nilsen B, Palstrøm A (2000) Engineering geology and rock engineering. Norwegian Group for Rock Mechanics, Oslo

    Google Scholar 

  • Norton MG (1987) The Nordfjord-Sogn Detachment, W. Norway. Norsk Geol Tidsskrift 67:93–106

    Google Scholar 

  • NRC (1996) Rock fractures and fluid flow. Contemporary understanding and applications. US National Research Council. National Academy Press, Washington, DC

    Google Scholar 

  • Osmundsen PT, Andersen TB (1994) Caledonian compressional and late-orogenic extensional deformation in the Staveneset area, Sunnfjord, Western Norway. J Struct Geol 16:1385–1401

    Article  Google Scholar 

  • Osmundsen PT, Andersen TB (2001) The middle Devonian basins of western Norway: sedimentary response to large-scale transtensional tectonics? Tectonophysics 333:51–68

    Article  Google Scholar 

  • Pailet F, Duncanson R (1994) Comparison of drilling reports and detailed geophysical analysis of ground-water production in bedrock wells. Ground Water 32(2):200–206

    Article  Google Scholar 

  • Ramberg IB, Gabrielsen RH, Larsen BT, Solli A (1977) Analysis of fracture pattern in southern Norway. Geol Mijnbouw 56:295–310

    Google Scholar 

  • Rogers SF (2003) Critical stress-related permeability in fractured rocks. In: Ameen MS (ed) Fracture and in-situ stress characterization of hydrocarbon reservoirs. Geol Soc Lond Spec Publ No. 209, pp 7–16

  • Rohr-Torp E (1994) Present uplift rates and groundwater potential in Norwegian hard rocks. Geol Surv Norway Bull 426:47–52

    Google Scholar 

  • Savage WZ, Swolfs HS, Powers PS (1985) Gravitational stresses in long symmetric ridges and valleys. Int J Rock Mech Min Sci Geomech Abstr 22(5):291–302

    Article  Google Scholar 

  • Sayers CM (1990) Stress-induced fluid flow anisotropy in fractured rock. Transport Porous Media 5:287–297

    Article  Google Scholar 

  • Sheskin DJ (2000) Parametric and nonparametric statistical procedures. Chapman and Hall, Boca Raton, FL, USA

    Google Scholar 

  • Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer Academic, Dordrecht

    Google Scholar 

  • Valle V, Færseth RB, Fossen H (2002) Devonian-Triassic brittle deformation based on dyke geometry and fault kinematics in the Sunnhordland region, SW Norway. Norwegian J Geol 82:3–17

    Google Scholar 

  • Wise DU, McCrory TA (1982) A new method of fracture analysis: azimuth versus traverse distance plots. Geol Soc Am Bull 93:889–897

    Article  Google Scholar 

Download references

Acknowledgements

The fieldwork for this research was funded by the Geological Survey of Norway (NGU), project 2685.00. Pumping tests were performed by Gaute Storrø and Øystein Jæger, and geophysical measurements by Harald Elvebakk, Jan S. Rønning and Torleif Lauritsen, all employed at NGU. Silje Berg worked intensively with the five, hypothesis ii wells during her MSc work. One of the authors, Alvar Braathen, was employed at NGU while the project was running. We thank the Hydrogeology Journal reviewers for constructive and useful comments on the manuscript

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Henriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, H., Braathen, A. Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeol J 14, 444–461 (2006). https://doi.org/10.1007/s10040-005-0444-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-005-0444-7

Keywords

Navigation