Skip to main content

Advertisement

Log in

The role of some regional factors in the assessment of well yields from hard-rock aquifers of Fennoscandia

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The attributes of about 13,600 hard-rock water wells were arranged in three profiles parallel to gradients of typical regional factors. These factors are thought to be of importance to groundwater yield from wells in the Fennoscandian crust and were subjected to a statistical analysis. The regional factors comprise annual rate of postglacial crustal uplift and annual average precipitation, whereas soil type, soil depth, and bedrock type are considered sub-regional and local factors. There is no clear trend in well yield along the regional gradients. The results of the statistical analysis indicate that for the typical regional variables, the rate of postglacial uplift and average annual precipitation explain not more than 11% of the observed variation in well yields. Some of these factors, and other factors not included in this study, work in opposite directions and may cancel each other out. It is concluded that other, more local factors, such as well depth, proximity to fracture-related lineaments and topography, have a greater influence on well yields in this area.

Résumé

Les propriétés d'environ 13,600 puits d'extraction d'eau souterraine dans le socle ont été réparties selon trois profils disposés perpendiculairement aux gradients de facteurs régionaux typiques. Ces facteurs sont considérés comme étant importants pour les rendements des puits dans le bouclier fenno-scandien et ont été soumis à une analyse statistique. Les facteurs régionaux sont le taux de soulèvement postglaciaire et les précipitations moyennes annuelles, alors que le type et l'épaisseur de sol, le type de substratum sont des facteurs sub-régionaux et locaux. Il n'existe pas de tendance dans le rendement des puits selon les gradients régionaux. Les résultats de l'analyse statistique indiquent que pour les variables régionales typiques, le taux de soulèvement postglaciaire et les précipitations moyennes annuelles n'expliquent pas plus de 11,2% de la variation observée du rendement des puits. Certains de ces facteurs, ainsi que d'autres non pris en compte dans cette étude, jouent dans des directions opposées et peuvent s'annuler l'un l'autre. En conclusion, d'autres facteurs, plus locaux, tels que la proximité de linéaments corrélés aux fractures et la topographie peuvent avoir une grande importance pour le rendement des puits dans cette région.

Resumen

Se ha recogido los atributos de aguas subterráneas con 13.600 años de antigüedad en tres perfiles perpendiculares a los gradientes de los factores regionales típicos, las cuales son captadas por pozos perforados en rocas duras. Se cree que estos factores tienen importancia en el rendimiento de los pozos realizados en la corteza de Fenoscandia, y han sido analizados estadísticamente. Los factores regionales comprenden la tasa anual de alzamiento postglacial y la precipitación media anual, mientras que el tipo y la profundidad del suelo, y el tipo de roca madre, son tratados como factores sub-regionales y locales. No se aprecia una tendencia clara en el rendimiento de los pozos a lo largo de los gradientes regionales. Los resultados del análisis estadístico indican que, para las variables regionales típicas, la tasa de alzamiento postglacial y la precipitación media anual explican como mucho el 11,2% de las variaciones observadas en el rendimiento de los pozos. Algunos de estos factores, así como otros no incluidos en el estudio, son de signo opuesto y pueden llegar a compensarse. Se concluye que factores diferentes, de escala más local, tales como la proximidad a lineamientos correlacionados con fracturas o la topografía, pueden afectar de forma más importante al rendimiento de los pozos en esta zona.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.a
Fig. 7.
Fig. 8a–c.
Fig. 9a–c.

Similar content being viewed by others

References

  • Anderberg J (2000) The Hallandsås railway tunnel. Geology and groundwater. In: Knutsson G (ed) Hard-rock hydrogeology of the Fennoscandian shield: 5–12. Nordic Hydrological Programme. NHP report no 45, Stockholm

  • Arvidsson R (1996) Fennoscandian earthquakes: whole crustal rupturing related to postglacial rebound. Science 274:744–746

    Article  CAS  Google Scholar 

  • Arvidsson R, Kulhanek O (1994) Seismodynamics of Sweden deduced from earthquake focal mechanisms. Geophys J Int 116:377–392

    Google Scholar 

  • Bakkelid S (1992) Mapping the rate of crustal uplift in Norway: parameters, methods and results. Norsk Geol Tidsskrift 72:239–246

    Google Scholar 

  • Banks D (1991) Boring og prøvepumping av hydrogeologiske testhull i en grønnstein akvifer, Østmarkneset, Trondheim [Drilling and test pumping of boreholes in a greenstone aquifer, Østmarkneset, Trondheim]. Geological Survey of Norway Report 91.213

  • Banks D, Solbjørg ML, Rohr-Torp E (1992) Permeability of fracture zones in a Precambrian granite. Q J Eng Geol 25:377–388

    Google Scholar 

  • Banks D, Odling NE, Skarphagen H, Rohr-Torp E (1996) Permeability and stress in crystalline rocks. Terra Nova 8:223–235

    Google Scholar 

  • Bartlett MS (1937) Some examples of statistical methods of research in agriculture and applied biology. J R Statist Soc Suppl 4:137–183

    Google Scholar 

  • Berggren M (1998) Hydraulic conductivity in Swedish bedrock estimated by means of geostatistics. Thesis Report Series 1998:9, Royal Institute of Technology (KTH), Department of Civil and Environmental Engineering, Division of Land and Water Resources, Stockholm, Sweden

    Google Scholar 

  • Bergstrøm B (1999) Glacial geology, deglaciation chronology and sea-level changes in southern Telemark and Vestfold counties, Southern Norway. Nor Geol Unders Bull 435:23–42

    Google Scholar 

  • Braathen A, Gaut S, Henriksen H, Storrø G, Jaeger Ø (1998) Holmedal brønnfelt, Sunnfjord: Geologiske undersøkelser og prøvepumping [Holmedal well site, Sunnfjord: Geological investigations and test pumping]. Geological Survey of Norway Report 98.085

  • Braathen A, Berg S, Storrø G, Jaeger Ø, Henriksen H, Gabrielsen G (1999) Bruddsonegeometri og grunnvannstrøm; resultater fra bruddstudier og testboringer i Sunnfjord [Fracture-zone geometry and groundwater flow; results from fracture studies and test-drilling in Sunnfjord]. Geological Survey of Norway Report 99.017

  • Brook GA (1988) Hydrogeological factors influencing well productivity in the crystalline rocks of Georgia. SE Geol 29:65–81

    Google Scholar 

  • Bungum H (1989) Earthquake occurrence and seismotectonics in Norway and surrounding areas. In: Gregersen S, Basham PW (eds) Earthquakes at North Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic Publishers, Dordrecht, pp 501–519

  • Carlsson A, Christiansson R (1987) Geology and tectonics at Forsmark, Sweden. Vattenfall, FUD-Rapp. no U(B) 1987/42, Statens Vattenfallsverk, Älvkarleby, Sweden

  • Carlsson A, Olsson T (1979) Hydraulic conductivity and its stress dependence. Proceedings of the Workshop on Low Flow, Low Permeability Measurements in Largely Impermeable Rocks, OECD, Paris

  • Dehls JF, Olesen O, Bungum H, Hicks EC, Lindholm CD, Riis F (2000) Neotectonic map: Norway and adjacent areas, 1:3,000,000. Geological Survey of Norway

  • Denton GH, Hughes TJ (eds) (1981) The last great ice sheets. Wiley, New York

  • Dine JR, Adamski JC (1995) Water resources of Howard County. Maryland Geological Survey Bulletin 38

  • DNMI (1993). Digital map 1:2,000,000 of annual average precipitation 1961–1990. The Norwegian Mapping Authority LOT60047-R92906. The Norwegian Meteorological Institute, Oslo, Norway

    Google Scholar 

  • DNRE (1997) Minimum construction requirements for water bores in Australia. Department of Natural Resources and Environment, Victoria, Australia

  • Fejerskov M, Lindholm CD (2000) Crustal stresses in and around Norway; an evaluation of stress generating mechanisms. In: Nøttvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ 167:451–467

    Google Scholar 

  • Fejerskov M, Lindholm CD, Myrvang A, Bungum H (2000) Crustal stresses in and around Norway: a compilation of in situ stress observations. In: Nøttvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ 167:441–449

    Google Scholar 

  • Fjeldskaar W, Lindholm CD, Dehls JF, Fjeldskaar I (2000) postglacial uplift, neotectonics and seismicity in Fennoscandia. Quaternary Sci Rev 19:1413–1422

    Article  Google Scholar 

  • Gaut S, Storrø G, Bjørnstad H, Braathen A (1999) Holmedal brønnfelt, Sunnfjord: Langtids prøvepumping og tracertester [Holmedal well site, Sunnfjord: Long term pumping tests and tracer experiments]. Geological Survey of Norway Report 99.016

  • Gudmundsson A (1999) postglacial crustal doming, stresses and fracture formation with application to Norway. Tectonophysics 307:407–419

    Article  Google Scholar 

  • Gudmundsson A, Fjeldskaar I, Gjesdal O (2002) Fracture-generated permeability and groundwater yield in Norway. Geol Surv Norway Bull 439:61–69

    Google Scholar 

  • Haldorsen S, Jenssen PD, Koler JC, Myhr E (1983) Some hydraulic properties of Sandy-silty Norwegian Tills. Acta Geol Hispanica 18:191–198

    Google Scholar 

  • Hast N (1966) The state of stress in the upper part of the Earth's crust. Eng Geol 2(1):5–17

    Article  Google Scholar 

  • Hast N (1974) The state of stress in the upper part of the Earth's crust as determined by measurements of absolute rock stress. Naturwissenschaften 61:468–475

    CAS  Google Scholar 

  • Henriksen H (1988) Hydrogeologisk undersøkingsprogram for Sogn og Fjordane, rapport om fylkesomfattende registrering av fjellborebrønner [Hydrogeological Investigation Programme: Sogn og Fjordane County. Report on registration of boreholes in hard-rocks]. Geological Survey of Norway Report 88.210

  • Henriksen H (1995) Relation between topography and borehole yield in boreholes in crystalline rocks, Sogn og Fjordane, Norway. Ground Water 33(4):635–643

    CAS  Google Scholar 

  • Hicks EC, Bungum H, Lindholm CD (2000) Stress inversions of earthquake focal mechanism solutions from onshore and offshore Norway. Norsk Geologisk Tidsskrift 80:235–250

    Article  Google Scholar 

  • Johnston RJ (1980) Multivariate statistical analysis in geography. Longman Scientific and Technical, Essex, UK

  • Knutsson G (1997) New findings on the hydrogeology of hard rocks in Sweden. Hydrogeology. The second workshop on hard-rock hydrogeology of the Bohemian Massif. Acta Universitatis, Wratislaviensis, Wroclaw, no 2052, pp 21–31

  • Knutsson G, Morfeldt CO (2002) Grundvatten- teori and tillämpning [Groundwater theory and application]. AB Svensk Byggtjänst, Stockholm

  • Krásný J (1974) Les différences de la transmissivité, statistiquement signifcantives, dans les zones de l'infiltration et du drainage [Significant statistical differences in transmissivity in recharge and discharge areas]. Mém Assoc Int Hydrogeol Communications 10(I):204–211, Montpellier, France

  • Krásný J (1993) Classification of transmissivity magnitude and variation. Ground Water 31:230–236

    Google Scholar 

  • Krásný J (2000) Hierarchy of inhomogeneity elements influencing transmissivity distribution in hard-rocks. In: Knutsson G (ed) Proceedings of the Workshop on Hard-rock Hydrogeology of the Fennoscandian Shield, Nordic Hydrological Program Report 45, pp 37–46

  • Krásný J (2002) Quantitative hard-rock hydrogeology in a regional scale. NGU Bull 439:7–14

    Google Scholar 

  • Lambeck K, Johnston P, Nakada M (1990) Holocene glacial rebound and sea-level change in NW Europe. Geophys J Int 135:374–387

    Google Scholar 

  • LeGrand HE (1954) Geology and ground water in the Statesville area, North Carolina. Bulletin no 68. North Carolina Department of Conservation and Development, Division of mineral Resources, Raleigh, North Carolina

  • Levene H (1960) Robust tests for equality of variance. In: Olkin I (ed) Contributions to probability and statistics. Stanford University Press, Palo Alto,Calif, pp 278–292

  • Lindholm CD, Bungum H, Hicks EC, Villagran M (2000) Crustal stress and tectonics in Norwegian regions determined from earthquake focal mechanisms. In: Nøttvedt A (ed) Dynamics of the Norwegian Margin. Geol Soc Lond Spec Publ 167:441–449

    Google Scholar 

  • Lindman HR (1974) Analysis of variance in complex experimental designs. WH Freeman, San Francisco

  • Mabee SB (1998) Factors influencing well productivity in glaciated metamorphic rocks. Ground Water 37(1):88–97

    Google Scholar 

  • McFarlane MJ, Chilton PJ, Lewis MA (1992) Geomorphological controls on borehole yields: a statistical study in an area of basement rocks in central Malawi. In : Wright EP, Burgess WG (eds) Hydrogeology of crystalline basement aquifers in Africa. Geol Soc Spec Publ 66:131–154

    Google Scholar 

  • Midtbø E (1996) Sammenheng mellom in-situ spenninger og grunnvannstrøm i berg [Relations between in-situ rock stresses and groundwater flow in crystalline rocks]. MSc Thesis, NTNU Faculty of Geology and Petroleum Technology, Trondheim, Norway

  • Milne GA, Davis JL, Mitrovica JX, Scherneck HH, Johansson JM, Vermeer M, Koivula H (2001) Space-geodetic constraints on glacial isostatic adjustment in Fennoscandia. Science 29:2381–2385

    Article  Google Scholar 

  • Morland G (1997) Petrology, lithology, bedrock structures, glaciation and sea level. important factors for groundwater yield and composition of Norwegian bedrock boreholes? Geological Survey of Norway Report 97.122 I

  • Mörner NA (1980) The Fennoscandian uplift: geological data and their geodynamical implication. In: Mörner NA (ed) Earth rheology, isostasy and eustasy. Wiley, New York, pp 251–284

  • NBG (2000) Engineering geology and rock engineering. Norwegian Group for Rock Mechanics, Oslo

  • Nesje A, Dahl SO (1992) Geometry, thickness and isostatic loading of the Late Weichselian Scandinavian ice sheet. Norsk Geologisk Tidsskrift 72:271–273

    Google Scholar 

  • NGU (1999a) Digital bedrock database of Norway 1:3,000,000. Geological Survey of Norway, Trondheim, Norway

  • NGU (1999b) Digital database of surficial deposits of Norway, 1:1,000,000. Geological Survey of Norway, Trondheim, Norway

  • Nordseth K (1987) Climate and hydrology of Norden. In: Varjo U, Tietze W (eds) Norden. Man and environment. Gebrüder Borntraeger, Berlin, pp 120–128

  • Norwegian Mapping Authority (2002) Digital topographic database of the Nordic countries, R101058. Norwegian Mapping Authority, Hønefoss, Norway

  • NVE (1987) National atlas of Norway, map 3.2.2. Mean annual runoff 1930–1960 1:2 mill. Norwegian Water Resources and Energy Directorate. Norwegian Mapping Authority

  • Olofsson B (1993) Flow of groundwater from soil to crystalline rock—a review, vol XXIV, part 2. In: Banks D, Banks S (eds) Int Assoc Hydrol Memoires. Geological Survey of Norway, Trondheim, pp 915–931

  • Olsson T (1979) Hydraulic properties and groundwater balance in a soil-rock aquifer system in the Juktan area, northern Sweden. PhD Thesis, Striae 12, 72 pp

  • Olsson T (1980) Soil aquifers as infiltration reservoirs for the bedrock. UNGI Report no 53, 6th Nordic Hydrological Conference, Problems in Water Power Exploitation, pp 451–460

  • Riis F, Jensen LN (1992) Introduction: measuring uplift and erosion—proposal for a terminology. Norsk Geologisk Tidsskrift 72:223–228

    Google Scholar 

  • Rohr-Torp E (1994) Present uplift rates and groundwater potential in Norwegian hard rocks. Geol Surv Norway Bull 426:47–52

    Google Scholar 

  • Rudberg S (1987) Geology and geography of Norden. In: Varjo U, Tietze W (eds) Norden. Man and environment. Gebrüder Borntraeger, Berlin, pp 54–118

  • Sejrup HP, Haflidason H, Aarseth I, King E, Forsberg CF, Long D Rokoengen K (1994) Late Weichselian glaciation history of the northern North Sea. Boreas 23(1):1–13

    Google Scholar 

  • SGU (1999) National bedrock database 1:1,000,000. Dnr: 00-751/99. Geological Survey of Sweden, Uppsala, Sweden

  • SGU (2001) National database of surficial deposits 1:1,000,000. Dnr: 00-410/2001. Geological Survey of Sweden, Uppsala, Sweden

  • Sheskin DJ (2000) Handbook of parametric and nonparametric statistical procedures. Chapman and Hall, Boca Raton, Florida, USA

  • Singhal BBS, Gupta RP (1999) Applied hydrogeology of fractured rocks. Kluwer Academic Publishers, Dordrecht, The Netherlands

  • SINTEF (1996) Spenningsmåling ved hydraulisk splitting, Hestad og Atløy i Sogn og Fjordane [Measurements of rock stresses by hydraulic splitting, Hestad and Atløy, Sogn og Fjordane). SINTEF Civil and Environmental Engineering Report STF22 F96090. Trondheim, Norway

  • SKB (1992) Final disposal of spent nuclear fuel. Importance of the bedrock for safety. SKB, Technical Report 92-20

  • Slunga RS (1989) Focal mechanisms and crustal stresses in the Baltic shield. In: Gregersen S, Basham PW (eds) Earthquakes at North Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic Publishers, Dordrecht, pp 261–276

  • SMHI (1995) Digital map 1:2,500,000 of annual average precipitation 1960–1991. Swedish Hydrological and Meteorological Institute, Norrköping, Sweden

    Google Scholar 

  • SNA (1994) National atlas of Sweden. Fredén C (ed) Theme band geology, 1st edn. Vällingby, Sweden

  • Sørensen R, Bakkelid S, Torp B (1987) Landheving. Nasjonalatlas for Norge. Hovedtema 2: Landformer, berggrunn og løsmasser. Kartblad 2.3.3 [Crustal uplift. National atlas for Norway. Main theme 2: Landforms, bedrock and loose deposits. Map sheet 2.3.3]. Norwegian Mapping Authority

    Google Scholar 

  • Stein S, Cloeting S, Sleep NH, Wortel R (1989) Passive margin earthquakes, stresses and rheology. In: Gregersen S, Basham PW (eds) Earthquakes at North Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic Publishers, Dordrecht, pp 231–259

  • Stephansson O (1989) Stress: measurements and modelling of rock mechanics in Fennoscandia. In: Gregersen S, Basham PW (eds) Earthquakes at North Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic Publishers, Dordrecht, pp 213–229

  • Stephansson O, Dahlström LO, Bergström K, Särkkä P, Väätäinen A, Myrvang A, Hansen TH (1987) Fennoscandian rock stress data base (FRSDB). Luleå University, Research report, Luleå 1987.06, Sweden

  • Thorne GA, Gascoyne C (1993) Groundwater recharge and discharge characteristics in granitic terranes of the Canadian Shield. In: Banks SB Banks D (eds) Hydrogeology of hard rocks. Memoirs of the XXIVth Congress International Association of Hydrogeologists, pp 368–374

  • Wahlström R (1989) Seismodynamics and postglacial faulting in the Baltic Shield. In: Gregersen S, Basham PW (eds) Earthquakes at North Atlantic passive margins: neotectonics and postglacial rebound. Kluwer Academic Publishers, Dordrecht, pp 467–482

  • Wallroth T, Rosenbaum MS (1996) Estimating the spatial variability of specific capacity from a Swedish regional database. Mar Petrol Geol 13:457–461

    Article  Google Scholar 

  • Wladis D (1995) Assessing hydraulic properties of rock using remote sensing. Publ A78, Thesis for Licentiate degree, Chalmers University of Technology, Göteborg, Sweden

  • Wladis D, Gustafson G (1999) Regional characterisation of hydraulic properties of rock using air-lift data. Hydrogeol J 7:168–179

    Article  Google Scholar 

  • Wu P, Johnston P, Lambeck K (1999) postglacial rebound and fault instability in Fennoscandia. Geophys J Int 139:657–670

    Article  Google Scholar 

  • Zhang Y, Hobbs BE, Ord A (1997) Effect of topography and density inhomogeneity on the pattern of crustal stress. Geophys Down Under 24:77–79

    Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the valuable comments of Agust Gudmundsson and Gert Knutsson, which significantly improved the first version of this paper. The author also acknowledges reviews and constructive comments by Erik Rohr-Torp and a second anonymous reviewer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helge Henriksen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henriksen, H. The role of some regional factors in the assessment of well yields from hard-rock aquifers of Fennoscandia. Hydrogeology Journal 11, 628–645 (2003). https://doi.org/10.1007/s10040-003-0277-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-003-0277-1

Keywords

Navigation